Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732119

ABSTRACT

High-risk human papillomavirus (HR-HPV; HPV-16) and cigarette smoking are associated with cervical cancer (CC); however, the underlying mechanism(s) remain unclear. Additionally, the carcinogenic components of tobacco have been found in the cervical mucus of women smokers. Here, we determined the effects of cigarette smoke condensate (CSC; 3R4F) on human ectocervical cells (HPV-16 Ect/E6E7) exposed to CSC at various concentrations (10-6-100 µg/mL). We found CSC (10-3 or 10 µg/mL)-induced proliferation, enhanced migration, and histologic and electron microscopic changes consistent with EMT in ectocervical cells with a significant reduction in E-cadherin and an increase in the vimentin expression compared to controls at 72 h. There was increased phosphorylation of receptor tyrosine kinases (RTKs), including Eph receptors, FGFR, PDGFRA/B, and DDR2, with downstream Ras/MAPK/ERK1/2 activation and upregulation of common EMT-related genes, TGFB SNAI2, PDGFRB, and SMAD2. Our study demonstrated that CSC induces EMT in ectocervical cells with the upregulation of EMT-related genes, expression of protein biomarkers, and activation of RTKs that regulate TGFB expression, and other EMT-related genes. Understanding the molecular pathways and environmental factors that initiate EMT in ectocervical cells will help delineate molecular targets for intervention and define the role of EMT in the initiation and progression of cervical intraepithelial neoplasia and CC.


Subject(s)
Epithelial Cells , Epithelial-Mesenchymal Transition , Transforming Growth Factor beta , Humans , Epithelial-Mesenchymal Transition/drug effects , Female , Transforming Growth Factor beta/metabolism , Epithelial Cells/metabolism , Epithelial Cells/virology , Epithelial Cells/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Cervix Uteri/pathology , Cervix Uteri/metabolism , Cervix Uteri/virology , Smoke/adverse effects , Papillomavirus Infections/metabolism , Papillomavirus Infections/virology , Papillomavirus Infections/pathology , Cell Proliferation/drug effects , Cell Movement/drug effects , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/etiology , Human papillomavirus 16/pathogenicity , Nicotiana/adverse effects , Human Papillomavirus Viruses
2.
Biomedicines ; 10(4)2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35453667

ABSTRACT

Cadmium (Cd) is one of the most prevalent environmental heavy metal contaminants and is considered an endocrine disruptor and carcinogen. In women with uterine fibroids, there is a correlation between blood Cd levels and fibroid tumor size. In this study, fibroid cells were exposed to 10 µM CdCl2 for 6 months and a fast-growing Cd-Resistant Leiomyoma culture, termed CR-LM6, was recovered. To characterize the morphological and mechanodynamic features of uterine fibroid cells associated with prolonged Cd exposure, we conducted time lapse imaging using a Zeiss confocal microscope and analyzed data by Imaris and RStudio. Our experiments recorded more than 64,000 trackable nuclear surface objects, with each having multiple parameters such as nuclear size and shape, speed, location, orientation, track length, and track straightness. Quantitative analysis revealed that prolonged Cd exposure significantly altered cell migration behavior, such as increased track length and reduced track straightness. Cd exposure also significantly increased the heterogeneity in nuclear size. Additionally, Cd significantly increased the median and variance of instantaneous speed, indicating that Cd exposure results in higher speed and greater variation in motility. Profiling of mRNA by NanoString analysis and Ingenuity Pathway Analysis (IPA) strongly suggested that the direction of gene expression changes due to Cd exposure enhanced cell movement and invasion. The altered expression of extracellular matrix (ECM) genes such as collagens, matrix metallopeptidases (MMPs), secreted phosphoprotein 1 (SPP1), which are important for migration contact guidance, may be responsible for the greater heterogeneity. The significantly increased heterogeneity of nuclear size, speed, and altered migration patterns may be a prerequisite for fibroid cells to attain characteristics favorable for cancer progression, invasion, and metastasis.

3.
FASEB J ; 36(2): e22101, 2022 02.
Article in English | MEDLINE | ID: mdl-35032343

ABSTRACT

Tetrabromobisphenol A (TBBPA), a derivative of BPA, is a ubiquitous environmental contaminant with weak estrogenic properties. In women, uterine fibroids are highly prevalent estrogen-responsive tumors often with excessive accumulation of extracellular matrix (ECM) and may be the target of environmental estrogens. We have found that BPA has profibrotic effects in vitro, in addition to previous reports of the in vivo fibrotic effects of BPA in mouse uterus. However, the role of TBBPA in fibrosis is unclear. To investigate the effects of TBBPA on uterine fibrosis, we developed a 3D human uterine leiomyoma (ht-UtLM) spheroid culture model. Cell proliferation was evaluated in 3D ht-UtLM spheroids following TBBPA (10-6 -200 µM) administration at 48 h. Fibrosis was assessed using a Masson's Trichrome stain and light microscopy at 7 days of TBBPA (10-3  µM) treatment. Differential expression of ECM and fibrosis genes were determined using RT² Profiler™ PCR arrays. Network and pathway analyses were conducted using Ingenuity Pathway Analysis. The activation of pathway proteins was analyzed by a transforming growth factor-beta (TGFB) protein array. We found that TBBPA increased cell proliferation and promoted fibrosis in 3D ht-UtLM spheroids with increased deposition of collagens. TBBPA upregulated the expression of profibrotic genes and corresponding proteins associated with the TGFB pathway. TBBPA activated TGFB signaling through phosphorylation of TGFBR1 and downstream effectors-small mothers against decapentaplegic -2 and -3 proteins (SMAD2 and SMAD3). The 3D ht-UtLM spheroid model is an effective system for studying environmental agents on human uterine fibrosis. TBBPA can promote fibrosis in uterine fibroid through TGFB/SMAD signaling.


Subject(s)
Fibrosis/chemically induced , Fibrosis/metabolism , Leiomyoma/chemically induced , Polybrominated Biphenyls/administration & dosage , Transforming Growth Factor beta/metabolism , Uterine Neoplasms/chemically induced , Uterine Neoplasms/metabolism , Cell Culture Techniques, Three Dimensional/methods , Cell Proliferation/drug effects , Estrogens/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Female , Humans , Leiomyoma/metabolism , Phosphorylation/drug effects , Signal Transduction/drug effects
4.
Nutrients ; 13(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34578926

ABSTRACT

Advanced research in recent years has revealed the important role of nutrients in the protection of women's health and in the prevention of women's diseases. Genistein is a phytoestrogen that belongs to a class of compounds known as isoflavones, which structurally resemble endogenous estrogen. Genistein is most often consumed by humans via soybeans or soya products and is, as an auxiliary medicinal, used to treat women's diseases. In this review, we focused on analyzing the geographic distribution of soybean and soya product consumption, global serum concentrations of genistein, and its metabolism and bioactivity. We also explored genistein's dual effects in women's health through gathering, evaluating, and summarizing evidence from current in vivo and in vitro studies, clinical observations, and epidemiological surveys. The dose-dependent effects of genistein, especially when considering its metabolites and factors that vary by individuals, indicate that consumption of genistein may contribute to beneficial effects in women's health and disease prevention and treatment. However, consumption and exposure levels are nuanced because adverse effects have been observed at lower concentrations in in vitro models. Therefore, this points to the duplicity of genistein as a possible therapeutic agent in some instances and as an endocrine disruptor in others.


Subject(s)
Endocrine Disruptors/pharmacology , Genistein/pharmacology , Phytoestrogens/pharmacology , Women's Health , Female , Humans
5.
Arch Toxicol ; 95(6): 1995-2006, 2021 06.
Article in English | MEDLINE | ID: mdl-33818655

ABSTRACT

Cadmium (Cd) is a toxic metal reported to act as an estrogen "mimic" in the rat uterus and in vitro. We have reported that Cd stimulates proliferation of estrogen-responsive human uterine leiomyoma (ht-UtLM; fibroid) cells through nongenomic signaling involving the G protein-coupled estrogen receptor (GPER), with activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (pMAPK44/42). In this study, we explored Cd-induced mechanisms downstream of MAPK and whether Cd could stimulate phosphorylation of Histone H3 at serine 10 (H3Ser10ph) through activated Aurora B kinase (pAurora B), a kinase important in activation of histone H3 at serine 10 during mitosis, and if this occurs via Fork head box M1 (FOXM1) and cyclin D1 immediately downstream of MAPK. We found that Cd increased proliferating cell nuclear antigen (PCNA) and H3Ser10ph expression by immunofluorescence, and that H3ser10ph and pAurora B were coexpressed along the metaphase plate in ht-UtLM cells. In addition, Cd-exposed cells showed higher expression of pMAPK44/42, FOXM1, pAurora B, H3ser10ph, and Cyclin D1 by western blotting. Immunoprecipitation and proximity ligation assays further indicated an association between FOXM1 and Cyclin D1 in Cd-exposed cells. These effects were attenuated by MAPK kinase (MEK1/2) inhibitor. In summary, Cd-induced proliferation of ht-UtLM cells occurred through activation of Histone H3 and Aurora B via FOXM1/Cyclin D1 interactions downstream of MAPK. This provides a molecular mechanism of how Cd acts as an "estrogen mimic" resulting in mitosis in hormonally responsive cells.


Subject(s)
Cadmium/toxicity , Leiomyoma/metabolism , Mitosis/drug effects , Uterine Neoplasms/metabolism , Aurora Kinase B/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Cyclin D1/metabolism , Female , Forkhead Box Protein M1/metabolism , Histones/metabolism , Humans , Mitogen-Activated Protein Kinases/metabolism , Receptors, Estrogen/drug effects , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects
6.
Article in English | MEDLINE | ID: mdl-35071781

ABSTRACT

Tetrabromobisphenol A (TBBPA) is a brominated flame retardant that induces endometrial adenocarcinoma and other uterine tumors in Wistar Han rats; however, early molecular events or biomarkers of TBBPA exposure remain unknown. We investigated the effects of TBBPA on growth factor receptor activation (phospho-RTK) in uteri of rats following early-life exposures. Pregnant Wistar Han rats were exposed to TBBPA (0, 0.1, 25, 250 mg/kg/day) via oral gavage on gestation day 6 through weaning of pups (PND 21). Pups were exposed in utero, through lactation, and by daily gavage from PND 22 to PND 90. Uterine horns were collected (at PND 21, PND 33, PND 90) and formalin-fixed or frozen for histologic, immunohistochemical, phospho-RTK arrays, or western blot analysis. At PND 21, the phosphor-RTKs, FGFR2, FGFR3, TRKC and EPHA1 were significantly increased at different treatment concentrations. Several phospho-RTKs were also significantly overexpressed at PND 33 which included epithelial growth factor receptor (EGFR), Fibroblast Growth Factor Receptor 3-4 (FGFR2, FGFR3, FGFR4), insulin-like growth factor receptor 1 (IGF1R), INSR, AXL, MERTK, PDGFRa and b, RET, Tyrosine Kinase with Immunoglobulin Like and EGF Like Domains 1 and 2 (TIE1; TIE2), TRKA, VEGFR2 and 3, and EPHA1 at different dose treatments. EGFR, an RTK overexpressed in endometrial cancer in women, remained significantly increased for all treatment groups at PND 90. Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2) and IGF1R were overexpressed at PND 33 and remained increased through PND 90, although ERBB2 was statistically significant at PND 90. The phospho-RTKs, FGFR3, AXL, DTK, HGFR, TRKC, VEGFR1 and EPHB2 and 4 were also statistically significant at PND 90 at different dose treatments. The downstream effector, phospho-MAPK44/42 was also increased in uteri of treated rats. Our findings show RTKs are dysregulated following early life TBBPA exposures and their sustained activation may contribute to TBBPA-induced uterine tumors observed in rats later in life.

7.
Arch Toxicol ; 93(10): 2773-2785, 2019 10.
Article in English | MEDLINE | ID: mdl-31468104

ABSTRACT

Cadmium (Cd) is a ubiquitous environmental metal that is reported to be a "metalloestrogen." Uterine leiomyomas (fibroids) are estrogen-responsive gynecologic neoplasms that can be the target of xenoestrogens. Previous epidemiology studies have suggested Cd may be associated with fibroids. We have shown that Cd can stimulate proliferation of human uterine leiomyoma (ht-UtLM) cells, but not through classical estrogen receptor (ER) binding. Whether nongenomic ER pathways are involved in Cd-induced proliferation is unknown. In the present study, by evaluating G protein-coupled estrogen receptor (GPER), ERα36, and phospho-epidermal growth factor receptor (EGFR) expression in human tissues, we found that GPER, ERα36 and phospho-EGFR were all highly expressed in fibroids compared to patient-matched myometrial tissues. In ht-UtLM cells, cell proliferation was increased by low doses of Cd (0.1 µM and 10 µM), and this effect could be inhibited by GPER-specific antagonist (G15) pretreatment, or silencing (si) GPER, but not by siERα36. Cd-activated MAPK was dependent on GPER/EGFR transactivation, through significantly increased phospho-Src, matrix metalloproteinase-2 (MMP2) and MMP9, and heparin-binding EGF-like growth factor (HB-EGF) expression/activation. Also, phospho-Src could interact directly to phosphorylate EGFR. Overall, Cd-induced proliferation of human fibroid cells was through a nongenomic GPER/p-src/EGFR/MAPK signaling pathway that did not directly involve ERα36. This suggests that Cd may be a risk factor for uterine fibroids through cross talk between hormone and growth factor receptor pathways.


Subject(s)
Cadmium Chloride/toxicity , Cell Proliferation/drug effects , Leiomyoma/pathology , Uterine Neoplasms/pathology , Adult , Cadmium Chloride/administration & dosage , Dose-Response Relationship, Drug , ErbB Receptors/genetics , Estrogen Receptor alpha/genetics , Female , Gene Expression Regulation , Gene Silencing , Humans , Leiomyoma/chemically induced , Leiomyoma/genetics , Middle Aged , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Uterine Neoplasms/chemically induced , Uterine Neoplasms/genetics
8.
Mol Cell Endocrinol ; 484: 59-68, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30615907

ABSTRACT

The role of ERα36 in regulating BPA's effects and its potential as a risk factor for human uterine fibroids were evaluated. BPA at low concentrations (10-6 µM - 10 µM) increased proliferation by facilitating progression of hormonally regulated, immortalized human uterine leiomyoma (ht-UtLM; fibroid) cells from G0-G1 into S phase of the cell cycle; whereas, higher concentrations (100 µM-200 µM) decreased growth. BPA upregulated ERα36 gene and protein expression, and induced increased SOS1 and Grb2 protein expression, both of which are mediators of the MAPKp44/42/ERK1/2 pathway. EGFR (pEGFR), Ras, and MAPKp44/42 were phosphorylated with concurrent Src activation in ht-UtLM cells within 10 min of BPA exposure. BPA enhanced colocalization of phosphorylated Src (pSrc) to ERα36 and coimmunoprecipitation of pSrc with pEGFR. Silencing ERα36 with siERα36 abolished the above effects. BPA induced proliferation in ht-UtLM cells through membrane-associated ERα36 with activation of Src, EGFR, Ras, and MAPK nongenomic signaling pathways.


Subject(s)
Benzhydryl Compounds/adverse effects , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Leiomyoma/metabolism , Phenols/adverse effects , Benzhydryl Compounds/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Female , GRB2 Adaptor Protein/metabolism , Gene Expression Regulation/drug effects , Humans , Leiomyoma/chemically induced , Leiomyoma/genetics , Phenols/pharmacology , Phosphorylation , SOS1 Protein/metabolism , Signal Transduction/drug effects , Up-Regulation
9.
PLoS One ; 12(10): e0186078, 2017.
Article in English | MEDLINE | ID: mdl-29020039

ABSTRACT

ERα36 is a naturally occurring, membrane-associated, isoform of estrogen receptor α. The expression of ERα36 is due to alternative splicing and different promoter usage. ERα36 is a dominant-negative effector of ERα66-mediated transactivational activities and has the potential to trigger membrane-initiated mitogenic, nongenomic, estrogen signaling; however, the subcellular localization of ERα36 remains controversial. To determine the cellular localization of ERα36 in estrogen-responsive human uterine smooth muscle (ht-UtSMC) and leiomyoma (fibroid; ht-UtLM) cells, we conducted systematic confocal microscopy and subcellular fractionation analysis using ERα36 antibodies. With Image J colocalizaton analysis plugin, confocal images were analyzed to obtain a Pearson's Correlation Coefficient (PCC) to quantify signal colocalization of ERα36 with mitochondrial, endoplasmic reticulum, and cytoskeletal components in both cell lines. When cells were double-stained with an ERα36 antibody and a mitochondrial-specific dye, MitoTracker, the PCC for the two channel signals were both greater than 0.75, indicating strong correlation between ERα36 and mitochondrial signals in the two cell lines. A blocking peptide competition assay confirmed that the mitochondria-associated ERα36 signal detected by confocal analysis was specific for ERα36. In contrast, confocal images double-stained with an ERα36 antibody and endoplasmic reticulum or cytoskeletal markers, had PCCs that were all less than 0.4, indicating no or very weak signal correlation. Fractionation studies showed that ERα36 existed predominantly in membrane fractions, with minimal or undetected amounts in the cytosol, nuclear, chromatin, and cytoskeletal fractions. With isolated mitochondrial preparations, we confirmed that a known mitochondrial protein, prohibitin, was present in mitochondria, and by co-immunoprecipitation analysis that ERα36 was associated with prohibitin in ht-UtLM cells. The distinctive colocalization pattern of ERα36 with mitochondria in ht-UtSMC and ht-UtLM cells, and the association of ERα36 with a mitochondrial-specific protein suggest that ERα36 is localized primarily in mitochondria and may play a pivotal role in non-genomic signaling and mitochondrial functions.


Subject(s)
Estrogen Receptor alpha/metabolism , Leiomyoma/metabolism , Mitochondria/metabolism , Myocytes, Smooth Muscle/metabolism , Uterus/pathology , Actins/metabolism , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Estrogen Receptor alpha/chemistry , Female , Humans , Intracellular Membranes/metabolism , Leiomyoma/pathology , Myocytes, Smooth Muscle/pathology , Peptides/metabolism , Prohibitins , Protein Binding , Protein Domains , Protein Transport , Repressor Proteins/metabolism , Subcellular Fractions/metabolism
10.
Cell Commun Signal ; 14(1): 18, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27582276

ABSTRACT

BACKGROUND: The phytoestrogen, genistein at low doses nongenomically activates mitogen-activated protein kinase p44/42 (MAPKp44/42) via estrogen receptor alpha (ERα) leading to proliferation of human uterine leiomyoma cells. In this study, we evaluated if MAPKp44/42 could activate downstream effectors such as mitogen- and stress-activated protein kinase 1 (MSK1), which could then epigenetically modify histone H3 by phosphorylation following a low dose (1 µg/ml) of genistein. RESULTS: Using hormone-responsive immortalized human uterine leiomyoma (ht-UtLM) cells, we found that genistein activated MAPKp44/42 and MSK1, and also increased phosphorylation of histone H3 at serine10 (H3S10ph) in ht-UtLM cells. Colocalization of phosphorylated MSK1 and H3S10ph was evident by confocal microscopy in ht-UtLM cells (r = 0.8533). Phosphorylation of both MSK1and H3S10ph was abrogated by PD98059 (PD), a MEK1 kinase inhibitor, thereby supporting genistein's activation of MSK1 and Histone H3 was downstream of MAPKp44/42. In proliferative (estrogenic) phase human uterine fibroid tissues, phosphorylated MSK1 and H3S10ph showed increased immunoexpression compared to normal myometrial tissues, similar to results observed in in vitro studies following low-dose genistein administration. Real-time RT-PCR arrays showed induction of growth-related transcription factor genes, EGR1, Elk1, ID1, and MYB (cMyb) with confirmation by western blot, downstream of MAPK in response to low-dose genistein in ht-UtLM cells. Additionally, genistein induced associations of promoter regions of the above transcription factors with H3S10ph as evidenced by Chromatin Immunoprecipitation (ChIP) assays, which were inhibited by PD. Therefore, genistein epigenetically modified histone H3 by phosphorylation of serine 10, which was regulated by MSK1 and MAPK activation. CONCLUSION: Histone H3 phosphorylation possibly represents a mechanism whereby increased transcriptional activation occurs following low-dose genistein exposure.


Subject(s)
Antineoplastic Agents/pharmacology , Epigenesis, Genetic , Genistein/pharmacology , MAP Kinase Signaling System/drug effects , Promoter Regions, Genetic , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Transcription Factors/metabolism , Cell Line, Tumor , Histones/metabolism , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Protein Processing, Post-Translational , Transcription Factors/genetics , Transcriptional Activation/drug effects
11.
Expert Opin Environ Biol ; 5(Suppl 1)2016.
Article in English | MEDLINE | ID: mdl-27512718

ABSTRACT

Genistein, an estrogenic, soy-derived isoflavone, may play a protective role against hormone-related cancers. We have reported that a high concentration of genistein inhibits cell proliferation and induces apoptosis in human uterine smooth muscle cells, but not in leiomyoma (fibroid) cells. To better understand the differential cell death responses of normal and tumor cells to a high concentration of genistein, we treated uterine smooth muscle cells and uterine leiomyoma cells with 50 µg/ml of genistein for 72 h and 168 h, and assessed for mediators of apoptosis, cytotoxicity and autophagy. We found that leiomyoma cells had increased protection from apoptosis by expressing an increased ratio of Bcl-2: bak at 72 h and 168 h; however, in smooth muscle cells, the Bcl-2: bak ratio was decreased at 72 h, but significantly rebounded by 168 h. The apoptosis extrinsic factors, Fas ligand and Fas receptor, were highly expressed in uterine smooth muscle cells following genistein treatment at both time points as evidenced by confocal microscopy. This was not seen in the uterine leiomyoma cells; however, cytotoxicity as indicated by elevated lactate dehydrogenase levels was significantly enhanced at 168 h. Increased immunoexpression of an autophagy/autophagosome marker was also observed in the leiomyoma cells, although minimally present in smooth muscle cells at 72 h. Ultrastructurally, there was evidence of autophagic vacuoles in the leiomyoma cells; whereas, the normal smooth muscle cells showed nuclear fragmentation indicative of apoptosis. In summary, our data show differential cell death pathways induced by genistein in tumor and normal uterine smooth muscle cells, and suggest novel cell death pathways that can be targeted for preventive and intervention strategies for inhibiting fibroid tumor cell growth in vivo.

12.
Genes Chromosomes Cancer ; 55(4): 397-406, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26799600

ABSTRACT

Histone phosphorylation has a profound impact on epigenetic regulation of gene expression, chromosome condensation and segregation, and maintenance of genome integrity. Histone H3 Serine 10 is evolutionally conserved and heavily phosphorylated during mitosis. To examine Histone H3 Serine 10 phosphorylation (H3S10ph) dynamics in mitosis, we applied immunogold labeling and confocal microscopy to visualize H3S10ph expression in MCF-7 cells. Confocal observations showed that MCF-7 cells had abundant H3S10ph expression in prophase and metaphase. In anaphase, the H3S10ph expression was significantly decreased and displayed only sparsely localized staining that mainly associated with the chromatid tips. We showed that immunogold bead density distribution followed the H3S10ph expression patterns observed in confocal analysis. At a higher magnification in metaphase, the immunogold beads were readily visible and the bead distribution along the condensed chromosomes was distinctive, indicating the specificity and reliability of the immunogold staining procedure. In anaphase, the beads were found to distribute focally in specific regions of chromatids, reinforcing the confocal observations of differential H3 phosphorylation. To our knowledge, this is the first report to show the specific H3S10ph expression with an immunogold technique and transmission electron microscopy. Additionally, with confocal microscopy, we analyzed H3S10ph expression in an immortalized cell line derived from benign uterine smooth muscle tumor cells. H3S10ph epitope was expressed more abundantly during anaphase in the benign tumor cells, and there was no dramatic differential expression within the condensed chromatid clusters as observed in MCF-7 cells. The differences in H3S10ph expression pattern and dynamics may contribute to the differential proliferative potential between benign tumor cells and MCF-7 cells.


Subject(s)
Histones/metabolism , Microscopy, Confocal/methods , Microscopy, Electron, Transmission/methods , Microscopy, Immunoelectron/methods , Mitosis , Serine/metabolism , Cell Proliferation , Chromatin/metabolism , Epitopes/biosynthesis , Humans , MCF-7 Cells , Phosphorylation
13.
J Signal Transduct ; 2012: 204236, 2012.
Article in English | MEDLINE | ID: mdl-23094148

ABSTRACT

Estrogen and growth factors play a major role in uterine leiomyoma (UtLM) growth possibly through interactions of receptor tyrosine kinases (RTKs) and estrogen receptor-alpha (ERα) signaling. We determined the genomic and nongenomic effects of 17ß-estradiol (E(2)) on IGF-IR/MAPKp44/42 signaling and gene expression in human UtLM cells with intact or silenced IGF-IR. Analysis by RT(2) Profiler PCR-array showed genes involved in IGF-IR/MAPK signaling were upregulated in UtLM cells by E(2) including cyclin D kinases, MAPKs, and MAPK kinases; RTK signaling mediator, GRB2; transcriptional factors ELK1 and E2F1; CCNB2 involved in cell cycle progression, proliferation, and survival; and COL1A1 associated with collagen synthesis. Silencing (si)IGF-IR attenuated the above effects and resulted in upregulation of different genes, such as transcriptional factor ETS2; the tyrosine kinase receptor, EGFR; and DLK1 involved in fibrosis. E(2) rapidly activated IGF-IR/MAPKp44/42 signaling nongenomically and induced phosphorylation of ERα at ser118 in cells with a functional IGF-IR versus those without. E(2) also upregulated IGF-I gene and protein expression through a prolonged genomic event. These results suggest a pivotal role of IGF-IR and possibly other RTKs in mediating genomic and nongenomic hormone receptor interactions and signaling in fibroids and provide novel genes and targets for future intervention and prevention strategies.

14.
Am J Physiol Endocrinol Metab ; 303(8): E1025-35, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22850687

ABSTRACT

Previously, we reported that fenvalerate (Fen) promotes proliferation of human uterine leiomyoma (UtLM) cells by enhancing progression of cells from G(0)-G(1) to S phase through molecular mechanisms independent of estrogen receptor-α and -ß. The cyclin-dependent kinase (CDK) inhibitor p27, which blocks G(1) to S phase transitions and is an important regulator of CDK2, is often decreased in hormonally regulated diseases, including uterine leiomyomas. Therefore, we were interested in whether Fen could regulate the expression of p27 and whether p27 might play a role in Fen-induced cell proliferation. Expression of p27 in Fen-treated UtLM and uterine smooth muscle cells (UtSMCs) was examined. We found that p27 mRNA was significantly downregulated and that protein levels were decreased in both cell types treated with 10 µM Fen for 24 h compared with respective controls. Overexpression of p27 in UtLM cells and UtSMCs using an adenovirus doxycycline (Dox)-regulated Tet-off system abrogated the proliferative effects of Fen, as evidenced by decreased total cell numbers and BrdU incorporation. Fen treatment increased CDK2 mRNA expression levels; however, overexpression of p27 also abolished this effect. In contrast, Dox treatment dramatically restored the above muted responses. Finally, we utilized siRNA to knock down p27 expression. After transfection, mRNA levels of p27 were downregulated in UtLM cells and UtSMCs and total cell numbers and BrdU incorporation increased significantly compared with nontransfected cells. Fen treatment in the presence of p27 silencing enhanced the increased cell counts and BrdU labeling in UtLM cells and UtSMCs. Taken together, these results indicate that p27 downregulation is critical for Fen-induced cell proliferation.


Subject(s)
Anticonvulsants/pharmacology , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p27/physiology , Leiomyoma/pathology , Myocytes, Smooth Muscle/drug effects , Nitriles/pharmacology , Pyrethrins/pharmacology , Uterine Neoplasms/pathology , Adenoviridae/genetics , Antimetabolites , Blotting, Western , Bromodeoxyuridine , Cell Count , Down-Regulation/drug effects , Female , Fluorescent Antibody Technique , Genetic Vectors , Humans , Microscopy, Confocal , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction
15.
Exp Mol Med ; 44(4): 281-92, 2012 Apr 30.
Article in English | MEDLINE | ID: mdl-22228119

ABSTRACT

Previously, we found that high doses of genistein show an inhibitory effect on uterine leiomyoma (UtLM) cell proliferation. In this study, using microarray analysis and Ingenuity Pathways Analysis™, we identified genes (up- or down-regulated, ≥ 1.5 fold, P ≤ 0.001), functions and signaling pathways that were altered following treatment with an inhibitory concentration of genistein (50 µg/ml) in UtLM cells. Downregulation of TGF-ß signaling pathway genes, activin A, activin B, Smad3, TGF-ß2 and genes related to cell cycle regulation, with the exception of the upregulation of the CDK inhibitor P15, were identified and validated by real- time RT-PCR studies. Western blot analysis further demonstrated decreased protein expression of activin A and Smad3 in genistein-treated UtLM cells. Moreover, we found that activin A stimulated the growth of UtLM cells, and the inhibitory effect of genistein was partially abrogated in the presence of activin A. Overexpression of activin A and Smad3 were found in tissue samples of leiomyoma compared to matched myometrium, supporting the contribution of activin A and Smad3 in promoting the growth of UtLM cells. Taken together, these results suggest that downregulation of activin A and Smad3, both members of the TGF-ß pathway, may offer a mechanistic explanation for the inhibitory effect of a high-dose of genistein on UtLM cells, and might be potential therapeutic targets for treatment of clinical cases of uterine leiomyomas.


Subject(s)
Activins/genetics , Anticarcinogenic Agents/pharmacology , Genistein/pharmacology , Leiomyoma/metabolism , Smad3 Protein/genetics , Transforming Growth Factor beta/genetics , Uterine Neoplasms/metabolism , Activins/metabolism , Activins/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p15/genetics , Cyclin-Dependent Kinase Inhibitor p15/metabolism , Down-Regulation , Female , Humans , Oligonucleotide Array Sequence Analysis , Signal Transduction/drug effects , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Up-Regulation
16.
Cell Commun Signal ; 8: 10, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20537183

ABSTRACT

BACKGROUND: Uterine leiomyomas (fibroids) are benign smooth muscle tumors that often contain an excessive extracellular matrix (ECM). In the present study, we investigated the interactions between human uterine leiomyoma (UtLM) cells and uterine leiomyoma-derived fibroblasts (FB), and their importance in cell growth and ECM protein production using a coculture system. RESULTS: We found enhanced cell proliferation, and elevated levels of ECM collagen type I and insulin-like growth factor-binding protein-3 after coculturing. There was also increased secretion of vascular endothelial growth factor, epidermal growth factor, fibroblast growth factor-2, and platelet derived growth factor A and B in the media of UtLM cells cocultured with FB. Protein arrays revealed increased phosphorylated receptor tyrosine kinases (RTKs) of the above growth factor ligands, and immunoblots showed elevated levels of the RTK downstream effector, phospho-mitogen activated protein kinase 44/42 in cocultured UtLM cells. There was also increased secretion of transforming growth factor-beta 1 and 3, and immunoprecipitated transforming growth factor-beta receptor I from cocultured UtLM cells showed elevated phosphoserine expression. The downstream effectors phospho-small mothers against decapentaplegic -2 and -3 protein (SMAD) levels were also increased in cocultured UtLM cells. However, none of the above effects were seen in normal myometrial cells cocultured with FB. The soluble factors released by tumor-derived fibroblasts and/or UtLM cells, and activation of the growth factor receptors and their pathways stimulated the proliferation of UtLM cells and enhanced the production of ECM proteins. CONCLUSIONS: These data support the importance of interactions between fibroid tumor cells and ECM fibroblasts in vivo, and the role of growth factors, and ECM proteins in the pathogenesis of uterine fibroids.

17.
Toxicol Lett ; 196(3): 133-41, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20230880

ABSTRACT

Fenvalerate (Fen), widely used for its high insecticidal potency and low mammalian toxicity, is classified as an endocrine-disrupting chemical. Recently, Fen has received great attention for its adverse effects on human reproductive health. In this study, we found that Fen (10 microM) had a stimulatory effect on the growth of both cell lines at 24 h compared with controls by MTS (p < 0.01) and BrdU (p < 0.01) assays in hormonally responsive uterine leiomyoma (UtLM) cells and normal uterine smooth muscle cells (UtSMC). Flow cytometry results showed that Fen enhanced the escape of cells from the G(0)-G(1) checkpoint and promoted progression of both cell types into the S phase. An Annexin V assay showed that Fen had an anti-apoptotic effect on both cell types. By Real-time PCR, we found that collagen I mRNA expression increased (p < 0.05) in Fen-treated cells compared to controls, although it was greater in UtLM tumor cells. Accordingly, Fen increased (p < 0.05) collagen I protein levels in both cell lysate and supernatant when compared to controls. To further test the mechanism of Fen's effects, transactivation and competitive binding assays were done. The results showed Fen did not significantly stimulate luciferase activity at concentrations of 0.1 microM, 1.0 microM or 10.0 microM in either of the cell types. Competitive binding assays revealed that the affinity of Fen binding to estrogen receptors (ERs) was non-detectable compared to E(2). Our data show that Fen can stimulate the growth of both UtLM cells and UtSMC, which involves a combination of enhanced cell cycle progression and inhibition of apoptosis. Also this compound can increase collagen I expression, at both mRNA and protein levels. Interestingly, the ER is less likely involved in either the hyperplasia or extracellular matrix (ECM) overproduction induced by Fen. Our results indicate that Fen exposure could be considered a novel risk factor for uterine fibroids through molecular mechanisms that do not directly involve the ERs.


Subject(s)
Collagen Type I/genetics , Endocrine Disruptors/toxicity , Leiomyoma/chemically induced , Myometrium/drug effects , Nitriles/toxicity , Pyrethrins/toxicity , Uterine Neoplasms/chemically induced , Apoptosis/drug effects , Bromodeoxyuridine/metabolism , Cell Cycle/drug effects , Cell Proliferation/drug effects , Female , Gene Expression Regulation/drug effects , Humans , Leiomyoma/metabolism , Leiomyoma/pathology , Myometrium/metabolism , Myometrium/pathology , RNA, Messenger/analysis , Receptors, Estrogen/physiology , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...