Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38668170

ABSTRACT

Scleroglucan (SG) is resistant to harsh reservoir conditions such as high temperature, high shear stresses, and the presence of chemical substances. However, it is susceptible to biological degradation because bacteria use SG as a source of energy and carbon. All degradation effects lead to viscosity loss of the SG solutions, affecting their performance as an enhanced oil recovery (EOR) polymer. Recent studies have shown that nanoparticles (NPs) can mitigate these degradative effects. For this reason, the EOR performance of two new nanohybrids (NH-A and NH-B) based on carboxymethyl-scleroglucan and amino-functionalized silica nanoparticles was studied. The susceptibility of these products to chemical, mechanical, and thermal degradation was evaluated following standard procedures (API RP 63), and the microbial degradation was assessed under reservoir-relevant conditions (1311 ppm and 100 °C) using a bottle test system. The results showed that the chemical reactions for the nanohybrids obtained modified the SG triple helix configuration, impacting its viscosifying power. However, the nanohybrid solutions retained their viscosity during thermal, mechanical, and chemical degradation experiments due to the formation of a tridimensional network between the nanoparticles (NPs) and the SG. Also, NH-A and NH-B solutions exhibited bacterial control because of steric hindrances caused by nanoparticle modifications to SG. This prevents extracellular glucanases from recognizing the site of catalysis, limiting free glucose availability and generating cell death due to substrate depletion. This study provides insights into the performance of these nanohybrids and promotes their application in reservoirs with harsh conditions.

2.
Nanomaterials (Basel) ; 14(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38535647

ABSTRACT

In this study, two new nanohybrids (NH-A and NH-B) were synthesized through carbodiimide-assisted coupling. The reaction was performed between carboxymethyl-scleroglucans (CMS-A and CMS-B) with different degrees of substitution and commercial amino-functionalized silica nanoparticles using 4-(dimethylamino)-pyridine (DMAP) and N,N'-dicyclohexylcarbodiimide (DCC) as catalysts. The morphology and properties of the nanohybrids were investigated by using transmission (TEM) and scanning electron microscopy (SEM), electron-dispersive scanning (EDS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-OES), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic light scattering (DLS). The nanohybrids exhibited differences in structure due to the incorporation of polyhedral oligomeric silsesquioxane (POSS) materials. The results reveal that hybrid nanomaterials exhibit similar thermal properties but differ in morphology, chemical structure, and crystallinity properties. Finally, a viscosity study was performed on the newly obtained nanohybrid materials; viscosities of nanohybrids increased significantly in comparison to the carboxymethyl-scleroglucans, with a viscosity difference of 7.2% for NH-A and up to 32.6% for NH-B.

3.
ACS Omega ; 9(7): 7923-7936, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405542

ABSTRACT

Nanoparticles (NPs) have been proposed as additives to improve the rheological properties of polymer solutions and reduce mechanical degradation. This study presents the results of the retention experiment and the numerical simulation of the displacement efficiency of a SiO2/hydrolyzed polyacrylamide (HPAM) nanohybrid (CSNH-AC). The CSNH-AC was obtained from SiO2 NPs (synthesized by the Stöber method) chemically modified with HPAM chains. Attenuated total reflection-Fourier transform infrared spectroscopy, field emission gun-scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis were used to characterize the nanohybrid. The injectivity and dynamic retention tests were performed at 56 °C in a sandstone core with a porosity of ∼26% and a permeability of 117 and 287 mD. A history matching of the dynamic retention test was performed to determine the maximum and residual adsorption, IPV, and residual resistance factor (RRF). A laboratory-scale model was used to evaluate the displacement efficiency of CSNH-AC and HPAM through numerical simulation. According to the results, the nanohybrid exhibits better rheological behavior than the HPAM solution at a lower concentration. The nanopolymer sol adsorption and IPV (29,7 µg/grock, 14,5) are greater than those of the HPAM solution (9,2 µg/grock, 10), which was attributed to the difference between the rock permeabilities used in the laboratory tests (HPAM: 287 mD and CSNH-AC: 117 mD). The RF of both samples gradually increases with the increase in shear rate, while the RRF slightly decreases and tends to balance. However, the nanopolymer sol exhibits greater RF and RRF values than that of the polymer solution due to the strong flow resistance of the nanohybrid (higher retention in the porous media). According to the field-scale simulation, the incremental oil production could be 295,505 and 174,465 barrels for the nanopolymer sol and the HPAM solution, respectively (compared to waterflooding). This will represent an incremental recovery factor of 11.3% for the nanopolymer sol and 6.7% for the HPAM solution.

4.
Nanomaterials (Basel) ; 14(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38251121

ABSTRACT

Biopolymers emerge as promising candidates for enhanced oil recovery (EOR) applications due to their molecular structures, which exhibit better stability than polyacrylamides under harsh conditions. Nonetheless, biopolymers are susceptible to oxidation and biological degradation. Biopolymers reinforced with nanoparticles could be a potential solution to the issue. The nanofluids' stability and performance depend on the nanoparticles' properties and the preparation method. The primary objective of this study was to evaluate the effect of the preparation method and the nanoparticle type (SiO2, Al2O3, and TiO2) on the viscosity and stability of the scleroglucan (SG). The thickening effect of the SG solution was improved by adding all NPs due to the formation of three-dimensional structures between the NPs and the SG chains. The stability test showed that the SG + Al2O3 and SG + TiO2 nanofluids are highly unstable, but the SG + SiO2 nanofluids are highly stable (regardless of the preparation method). According to the ANOVA results, the preparation method and standing time influence the nanofluid viscosity with a statistical significance of 95%. On the contrary, the heating temperature and NP type are insignificant. Finally, the nanofluid with the best performance was 1000 ppm of SG + 100 ppm of SiO2_120 NPs prepared by method II.

5.
Polymers (Basel) ; 16(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38257006

ABSTRACT

This paper presents the methodology for synthesizing and characterizing two carboxymethyl EOR-grade Scleroglucans (CMS-A and CMS-B). An O-Alkylation reaction was used to insert a hydrophilic group (monochloroacetic acid-MCAA) into the biopolymer's anhydroglucose subunits (AGUs). The effect of the degree of the carboxymethyl substitution on the rheology and thermal stability of the Scleroglucan (SG) was also evaluated. Simultaneous thermal analysis (STA/TGA-DSC), differential scanning calorimetry (DSC), X-ray Diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Scanning Electron Microscopy, and Energy Dispersive Spectroscopy (SEM/EDS) were employed to characterize both CMS products. FTIR analysis revealed characteristic peaks corresponding to the carboxymethyl functional groups, confirming the modification. Also, SEM analysis provided insights into the structural changes in the polysaccharide after the O-Alkylation reaction. TGA results showed that the carboxymethylation of SG lowered its dehydroxylation temperature but increased its thermal stability above 300 °C. The CMS products and SG exhibited a pseudoplastic behavior; however, lower shear viscosities and relaxation times were observed for the CMS products due to the breakage of the SG triple helix for the chemical modification. Despite the viscosity results, the modified Scleroglucans are promising candidates for developing new engineering materials for EOR processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...