Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Opt Express ; 23(23): 29296-320, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26698415

ABSTRACT

Plasmonic transmission lines have great potential to serve as direct interconnects between nanoscale light spots. The guiding of gap plasmons in the slot between adjacent nanowire pairs provides improved propagation of surface plasmon polaritons while keeping strong light confinement. Yet propagation is fundamentally limited by losses in the metal. Here we show a workaround operation of the gap-plasmon transmission line, exploiting both gap and external modes present in the structure. Interference between these modes allows us to take advantage of the larger propagation distance of the external mode while preserving the high confinement of the gap mode, resulting in nanoscale confinement of the optical field over a longer distance. The performance of the gap-plasmon transmission line is probed experimentally by recording the propagation of quantum dots luminescence over distances of more than 4 µm. We observe a 35% increase in the effective propagation length of this multimode system compared to the theoretical limit for a pure gap mode. The applicability of this simple method to nanofabricated structures is theoretically confirmed and offers a realistic way to combine longer propagation distances with lateral plasmon confinement for far field nanoscale interconnects.

2.
Opt Express ; 23(22): 28108-18, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26561082

ABSTRACT

Plasmonic antennas integrated on silicon devices have large and yet unexplored potential for controlling and routing light signals. Here, we present theoretical calculations of a hybrid silicon-metallic system in which a single gold nanoantenna embedded in a single-mode silicon waveguide acts as a resonance-driven filter. As a consequence of scattering and interference, when the resonance condition of the antenna is met, the transmission drops by 85% in the resonant frequency band. Firstly, we study analytically the interaction between the propagating mode and the antenna by including radiative corrections to the scattering process and the polarization of the waveguide walls. Secondly, we find the configuration of maximum interaction and numerically simulate a realistic nanoantenna in a silicon waveguide. The numerical calculations show a large suppression of transmission and three times more scattering than absorption, consequent with the analytical model. The system we propose can be easily fabricated by standard silicon and plasmonic lithographic methods, making it promising as real component in future optoelectronic circuits.

4.
Anal Chim Acta ; 706(2): 275-84, 2011 Nov 14.
Article in English | MEDLINE | ID: mdl-22023862

ABSTRACT

Molecularly imprinted polymers (MIPs) are currently used to provide selectivity in chemical sensors. In this context, a non-covalent bisphenol-A (BPA)-imprinted polymer using 4-vinylpyridine (4-Vpy) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as crosslinker and a low volatile solvent, triethylene glycol dimethyl ether (TRIGLYME), in combination with a non-reactive linear polymer, poly (vinyl acetate) (PVAc), as porogen, was synthesized with a simple polymerization procedure. Batch rebinding experiments were carried out to evaluate the binding and selectivity properties of the BPA-MIP. The experimental adsorption isotherms were fitted and a heterogeneous distribution of the binding sites was found. The selectivity of MIP demonstrated higher affinity for target BPA and BPA-analogues over other common water pollutants. The adsorption kinetics followed the pseudo-second-order kinetic model so that the specific adsorption in the imprinted cavities by two strong hydrogen bonds could be described as a chemisorption process. The diffusion mechanism was determined by the intra-particle diffusion and Boyd models, both of them revealing that the adsorption was mainly governed by intra-particle diffusion. MIP was shown to be promising for regeneration without significant loss in adsorption capacity.

5.
Rev Esp Cardiol ; 43(3): 198-200, 1990 Mar.
Article in Spanish | MEDLINE | ID: mdl-2333406

ABSTRACT

We present a case of acute myocardial infarction in a 22 year old cocaine user. The absence of coronary artery stenotic lesions, as was seen in the coronary arteriography, and the absence of personal past cardiovascular or family history, suggest a cocaine-induced coronary spasm as responsible for the acute myocardial event.


Subject(s)
Cocaine , Myocardial Infarction/chemically induced , Substance-Related Disorders/complications , Adult , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...