Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Oecologia ; 192(3): 823-836, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31982953

ABSTRACT

Land-use intensification (LUI) and biological invasions are two of the most important global change pressures driving biodiversity loss. However, their combined impacts on biological communities have been seldom explored, which may result in misleading ecological assessments or mitigation actions. Based on an extensive field survey of 445 paired invaded and control plots of coastal vegetation in SW Spain, we explored the joint effects of LUI (agricultural and urban intensification) and invasion on the taxonomic and functional richness, mean plant height and leaf area of native plants. Our survey covered five invasive species with contrasting functional similarity and competitive ability in relation to the native community. We modeled the response of native communities for the overall and invader-specific datasets, and determined if invader-native functional differences could influence the combined impacts of LUI and invasion. Overall, we found that urban intensification reduced taxonomic richness more strongly at invaded plots (synergistic interactive effects). In contrast, functional richness loss caused by urban intensification was less pronounced at invaded plots (antagonistic interactive effects). Overall models showed also that urban intensification led to reduced mean leaf area, while agriculture was linked to higher mean plant height. When exploring invader-specific models, we observed that the combined effects of agricultural and urban intensification with invasion were heterogeneous. At invaded plots, invader-native functional differences accounted for part of this variability. Our findings demonstrate the importance of considering the interactive effects of global change pressures for a better assessment and management of ecosystems.


Subject(s)
Ecosystem , Plants , Biodiversity , Introduced Species , Spain
2.
Ecol Lett ; 17(1): 1-12, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24134461

ABSTRACT

Exotic plant invasions can notably alter the nitrogen (N) cycle of ecosystems. However, there is large variation in the magnitude and direction of their impact that remains unexplained. We present a structured meta-analysis of 100 papers, covering 113 invasive plant species with 345 cases of invasion across the globe and reporting impacts on N cycle-related metrics. We aim to explain heterogeneity of impacts by considering methodological aspects, properties of the invaded site and phylogenetic and functional characteristics of the invaders and the natives. Overall, plant invasions increased N pools and accelerated fluxes, even when excluding N-fixing invaders. The impact on N pools depended mainly on functional differences and was greater when the invasive plants and the natives differed in N-fixation ability, plant height and plant/leaf habit. Furthermore, the impact on N fluxes was related mainly to climate, being greater under warm and moist conditions. Our findings show that more functionally distant invaders occurring in mild climates are causing the strongest alterations to the N cycle.


Subject(s)
Introduced Species , Nitrogen Cycle , Plants/metabolism , Climate , Nitrogen Fixation , Phylogeny , Plants/genetics
3.
Ann Bot ; 108(7): 1337-45, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21948627

ABSTRACT

BACKGROUND AND AIMS: Specific leaf area (SLA), a key element of the 'worldwide leaf economics spectrum', is the preferred 'soft' plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and can be used instead of SLA. However, LT identifies shade at its lowest extreme and succulence at its highest, and is not related to soil fertility. Why then is SLA more frequently used as a predictor of soil fertility than LDMC? METHODS: SLA, LDMC and LT were measured and leaf density (LD) estimated for almost 2000 species, and the capacity of LD to predict LDMC was examined, as was the relative contribution of LDMC and LT to the expression of SLA. Subsequently, the relationships between SLA, LDMC and LT with respect to soil fertility and shade were described. KEY RESULTS: Although LD is strongly related to LDMC, and LDMC and LT each contribute equally to the expression of SLA, the exact relationships differ between ecological groupings. LDMC predicts leaf nitrogen content and soil fertility but, because LT primarily varies with light intensity, SLA increases in response to both increased shade and increased fertility. CONCLUSIONS: Gradients of soil fertility are frequently also gradients of biomass accumulation with reduced irradiance lower in the canopy. Therefore, SLA, which includes both fertility and shade components, may often discriminate better between communities or treatments than LDMC. However, LDMC should always be the preferred trait for assessing gradients of soil fertility uncoupled from shade. Nevertheless, because leaves multitask, individual leaf traits do not necessarily exhibit exact functional equivalence between species. In consequence, rather than using a single stand-alone predictor, multivariate analyses using several leaf traits is recommended.


Subject(s)
Plant Leaves/chemistry , Soil/chemistry , Models, Biological , Plant Leaves/anatomy & histology
4.
Ann Bot ; 105(4): 573-84, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20375204

ABSTRACT

BACKGROUND AND AIMS: Genome size is a function, and the product, of cell volume. As such it is contingent on ecological circumstance. The nature of 'this ecological circumstance' is, however, hotly debated. Here, we investigate for angiosperms whether stomatal size may be this 'missing link': the primary determinant of genome size. Stomata are crucial for photosynthesis and their size affects functional efficiency. METHODS: Stomatal and leaf characteristics were measured for 1442 species from Argentina, Iran, Spain and the UK and, using PCA, some emergent ecological and taxonomic patterns identified. Subsequently, an assessment of the relationship between genome-size values obtained from the Plant DNA C-values database and measurements of stomatal size was carried out. KEY RESULTS: Stomatal size is an ecologically important attribute. It varies with life-history (woody species < herbaceous species < vernal geophytes) and contributes to ecologically and physiologically important axes of leaf specialization. Moreover, it is positively correlated with genome size across a wide range of major taxa. CONCLUSIONS: Stomatal size predicts genome size within angiosperms. Correlation is not, however, proof of causality and here our interpretation is hampered by unexpected deficiencies in the scientific literature. Firstly, there are discrepancies between our own observations and established ideas about the ecological significance of stomatal size; very large stomata, theoretically facilitating photosynthesis in deep shade, were, in this study (and in other studies), primarily associated with vernal geophytes of unshaded habitats. Secondly, the lower size limit at which stomata can function efficiently, and the ecological circumstances under which these minute stomata might occur, have not been satisfactorally resolved. Thus, our hypothesis, that the optimization of stomatal size for functional efficiency is a major ecological determinant of genome size, remains unproven.


Subject(s)
Genome, Plant/genetics , Magnoliopsida/anatomy & histology , Magnoliopsida/genetics , Plant Stomata/anatomy & histology , Plant Stomata/genetics , Climate , Diploidy , Ecosystem , Geography , Magnoliopsida/classification , Magnoliopsida/growth & development , Organ Size , Plant Leaves/anatomy & histology , Plant Stomata/growth & development , Principal Component Analysis
5.
Plant Biol (Stuttg) ; 11(6): 803-11, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19796357

ABSTRACT

Flowering phenology is an important and poorly understood plant trait that may possibly be related to the invasiveness potential of alien species. The present work evaluates whether flowering time of invasive alien species is a key trait to overcome the climatic filters operating in continental Mediterranean ecosystems of Spain (characterised by summer drought and low temperatures in winter). We conducted comparisons between the flowering phenology of the invasive species in their native range and in Spain, and between flowering phenology of 91 coexisting invasive-native species pairs. For the alien species, geographical change from the native to the invaded region did not result in shifts in the start and the length of the flowering period. Overall, climatic conditions in the native range of species selected for a flowering pattern is maintained after translocation of the species to another region. Flowering of tropical and temperate invasive alien species peaked in summer, which contrasts with the spring flowering of native and invasive alien species of Mediterranean climate origin. By exploiting this new temporal niche, these invasive alien species native to tropical and temperate regions benefit from reduced competition with natives for abiotic and biotic resources. We suggest that human-mediated actions have reduced the strength of the summer drought filter in particular microhabitats, permitting the invasion of many summer-flowering aliens.


Subject(s)
Flowers/growth & development , Ecosystem , Mediterranean Region , Seasons , Spain , Species Specificity
6.
Plant Biol (Stuttg) ; 11(2): 142-51, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19228321

ABSTRACT

Effects of temperature and photoperiod and their interactions on budburst and on the use of carbon reserves were examined in two Mediterranean oaks differing in wood anatomy and leaf habit. Seedlings of Quercus ilex subsp. ballota (evergreen and diffuse-porous wood) and Q. faginea (semi-deciduous and ring-porous wood) were grown under two temperatures (12 and 19 degrees C) and two photoperiods (10 and 16 h) in a factorial experiment. In the 16 h photoperiod at 19 degrees C, photosynthesis was suppressed in half of the seedlings by covering leaves with aluminium foil. The concentration of soluble sugars, starch and lipids in leaves, stems and roots was assessed before and after budburst. Under the 12 degrees C treatment (mean current temperature in early spring in the Iberian Peninsula), budburst in Q. faginea occurred earlier than in Q. ilex. Higher temperature promoted earlier budburst in both species, mostly under the 16 h photoperiod. This response was less pronounced in Q. faginea because its budburst was also controlled by photoperiod, and because this species needs to construct a new ring of xylem before budburst to supply its growth demands. Therefore, dates of budburst of the two species became closer to each other in the warmer treatment, which might alter competitive relations between the species with changing climate. While Q. ilex relied on carbon reserves for budburst, Q. faginea relied on both carbon reserves and current photoassimilates. The different responses of the two Quercus species to temperature and photoperiod related more to xylem structure than to the source of carbon used for budburst.


Subject(s)
Carbon/metabolism , Flowers/growth & development , Hot Temperature , Photoperiod , Quercus/growth & development , Biomass , Carbohydrate Metabolism , Greenhouse Effect , Lipid Metabolism , Photosynthesis/physiology , Plant Structures , Quercus/metabolism , Starch/metabolism , Wood , Xylem/cytology
7.
Plant Biol (Stuttg) ; 8(1): 103-11, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16435274

ABSTRACT

Females of woody dioecious species usually devote more resources to reproduction than males. This may lead to a decrease in female survival and growth. The costs of reproduction, however, can be lightened through a number of mechanisms, as for example avoiding the temporal coincidence of reproduction and vegetative growth. The aim of this study was to evaluate whether males and females of P. lentiscus differ in the timing of their vegetative growth, and to assess whether the sequencing of vegetative growth and reproduction reduces reproductive costs. We monitored phenology in males and females. We also compared male and female allocation of nutrients and biomass in the branch, and the developmental stability of the growing shoots. We did this both prior to and at the end of the fruiting period. Males and females showed similar vegetative and flowering phenologies. Males invested more biomass in flowering, but the sexes showed equal vegetative biomass and nutrient content prior to the fruiting period. In female branches, no trade-off was found between fruit load and current-year vegetative growth. In P. lentiscus, avoiding the overlap of flowering, vegetative growth and fruiting probably contributes to reduce the immediate costs of reproductive efforts, both in males and females.


Subject(s)
Flowers/physiology , Pistacia/physiology , Biomass , Pistacia/growth & development , Plant Components, Aerial/growth & development , Reproduction , Time Factors
8.
New Phytol ; 168(1): 167-78, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16159331

ABSTRACT

Few studies have examined the effects of plant growth on nutrient remobilization in phenologically contrasting species. Here we evaluated the consequences of above-ground seasonality of growth and leaf shedding on the remobilization of nutrients from branches in eight evergreen Mediterranean phanaerophytes that differ widely in phenology. Vegetative growth, flower bud formation, flowering, fruiting, leaf shedding, and the variations in nitrogen (N), phosphorus (P) and potassium (K) pools in branches throughout the year were monitored in each species. Nitrogen and P remobilization occurred in summer, after vegetative growth and synchronously with leaf shedding. Despite the time-lag between growth and remobilization, the branches that invested more nutrients in vegetative growth also remobilized more nutrients from their old organs. Potassium remobilization peaked in the climatically harshest periods, and appears to be related to osmotic requirements. We conclude that N and P remobilization occurs mainly associated with leaf senescence, which might be triggered by factors such as the replenishment of nutrient reserves in woody organs, the hormonal relations between new and old leaves, or the constraints that summer drought poses on the amount of leaf area per branch in summer.


Subject(s)
Nitrogen/metabolism , Phosphorus/metabolism , Potassium/metabolism , Tracheophyta/metabolism , Ecosystem , Mediterranean Region , Models, Biological , Seasons , Species Specificity , Tracheophyta/growth & development , Tracheophyta/physiology
9.
Plant Biol (Stuttg) ; 7(2): 182-9, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15822014

ABSTRACT

The functional adjustments of winter-deciduous perennials to Mediterranean conditions have received little attention. The objectives of this study were: (i) to determine whether Amelanchier ovalis, a winter-deciduous shrub of Mediterranean and sub-Mediterranean regions, has nutritional and phenological traits in common with temperate zone deciduous trees and shrubs and (ii) to determine the constraints of Mediterranean environmental conditions on these traits. Over two years, phenology and nitrogen, and phosphorus concentrations were monitored monthly in the crown of A. ovalis. Leaf longevity, survival and nutrient resorption from senescing leaves were used to infer nutrient use efficiency and retention times of nutrients within the crown. In A. ovalis, bud burst was much earlier than in temperate deciduous trees and shrubs. Most vegetative and reproductive growth occurred in spring. Limited phenological development took place during the summer drought period. Unexpectedly, leaf shedding was very gradual, which might be related to water shortages in summer. Leaf longevity, nutrient resorption from senescing leaves, and maximum leaf nutrient concentrations indicated that nutrient retention times were short and nutrient use efficiency was low compared to that found in temperate deciduous plants and co-occurring Mediterranean evergreens. A. ovalis exhibited phenological development appropriate for a Mediterranean climate, although its limited ability to retain nutrients likely restricts the types of sites that it can occupy.


Subject(s)
Ecosystem , Rosaceae/physiology , Seasons , Climate , Mediterranean Region , Plant Leaves/physiology , Plant Stems/physiology , Rain
10.
Oecologia ; 124(4): 476-486, 2000 Sep.
Article in English | MEDLINE | ID: mdl-28308386

ABSTRACT

The structural causes of variation in leaf mass per area, and of variations in leaf structure accounted for by leaf habit and life form, were explored in a set of laboratory-grown seedlings of 52 European woody species. The leaf traits analysed included density, thickness, saturated mass/dry mass, and leaf nitrogen per mass and per area. Other traits described the anatomy of leaves, most of them relating to the lamina (proportions of palisade and spongy parenchymata, epidermis, air space and sclerified tissues, expressed as volume per leaf area, and per-cell transversal areas of epidermis and parenchymata), and another referring to the mid rib (transversal section of sclerified tissues). Across the whole set of species leaf mass per area was correlated with leaf density but not with thickness, and this was confirmed by taxonomic relatedness tests. Denser leaves corresponded with greater proportion of sclerified tissues in the lamina, smaller cells and lower water and N contents, but no relation was found with the proportion of air space in the lamina. Taxonomic relatedness analysis statistically supported the negative association of leaf density with saturated to dry leaf mass ratio. Thicker leaves also exhibited greater volume per leaf area and greater individual cell area in each of the tissues, particularly parenchyma. Mean leaf mass per area and leaf thickness were lower in deciduous than in evergreen species, but no significant differences in leaf density, proportion of sclerified tissues in the lamina or cell area were found between the two groups. Leaf mass per area was higher in trees and subshrubs than in shrubs and climbers-plus-scramblers, this rank being equal for leaf density and proportion of sclerified tissues in the lamina, and reversed for cell area. Given the standardised environment and ontogenetic phase of the seedlings, we conclude that variation in leaf structure and anatomy among species and species groups has a strong genetic basis, and is already expressed early in the development of woody plants. From an ecological viewpoint, we can interpret greater leaf mass per area across this species set as greater allocation to support and defence functions, as shown predominantly by species from resource-poor environments.

11.
Oecologia ; 116(1-2): 57-66, 1998 Aug.
Article in English | MEDLINE | ID: mdl-28308541

ABSTRACT

Stem traits were analysed in laboratory-grown seedlings of 80 European woody and semiwoody species of known potential relative growth rate (RGR) and of similar ontogenetic phase. The objectives were, firstly, to assess the relation between stem structure and plant growth potential and, secondly, to explore how stem structure varies among species differing in life form and leaf habit. Hydraulic conductance was represented by the mean diameter of the widest xylem conduits (Dmax), and structural strength by the percentage of xylem tissue occupied by cell wall material (CWx) or stem tissue density (SD). Across all species RGR showed a weak positive correlation with Dmax and weak negative ones with CWx and SD, with slow-growers showing great dispersion of stem trait values. In the RGR-Dmax relationship this dispersion disappeared when trees were removed from the analysis. None of the relationships were significant among tree species alone. It was suggested that fast-growers require a xylem with wide conduits (high Dmax) to achieve high hydraulic conductivity, and "cheaply" constructed stems (low CWx and SD) to maximise allocation to leaves. However, the possession of such traits does not guarantee fast growth, as other factors may constrain RGR elsewhere in the plant. Deciduous seedlings showed higher Dmax and lower CWx than evergreens. Higher Dmax could reflect an innate higher tolerance of conductivity loss by freeze-induced embolism in deciduous plants, which are not burdened by the maintenance of foliage in winter. In contrast, life forms were differentiated most clearly by SD. For instance, shrub seedlings had less dense stem tissues than tree seedlings, possibly because they need less investment in long-term strength and stature.

12.
Oecologia ; 111(4): 460-469, 1997 Aug.
Article in English | MEDLINE | ID: mdl-28308106

ABSTRACT

This study aimed to identify functional correlates of seedling leaf nutrient content among woody species and to characterise functional species groups with respect to leaf nutrient attributes. Seedlings of 81 woody species from the temperate zone of western Europe were grown in a standard laboratory environment with standard, near-optimal nutrient availability. Weight-based leaf N content (Nwght) was positively correlated with mean relative growth rate (RGR), but the correlation with mean RGR was tighter when leaf N was expressed on a whole-plant weight basis: leaf nitrogen weight ratio (LNWR). Area-based leaf N content (Narea) was not associated with mean RGR, but was closely correlated with the quotient of saturated leaf weight and leaf area. Weight-based leaf K content (Kwght) was a close correlate of the saturated/dry weight ratio of the foliage. Within the lower range, Kwght corresponded with growth-related nutrient attributes, but higher values appeared to indicate succulence or remobilisable stored water. Functional groups of species and genera could be distinguished with respect to seedling leaf nutrient attributes. Deciduous woody climbers and scramblers had consistently higher leaf Nwght, LNWR and (apparently) leaf Kwght than other deciduous species or genera, and shrubs had higher values than trees. These differences seemed due partly to variation in specific leaf area. Evergreens had consistently higher leaf Narea than deciduous plants, but there were no significant differences in weight-based leaf nutrient attributes between these two groups, possibly because of `luxury nutrient consumption' by the slow-growing evergreens. Another functional group was that of the nitrogen-fixing species, which had consistently high innate leaf Nwght compared to non-N-fixers. The ecological significance of the leaf nutrient attributes in this study is discussed by comparing the seedling data with those from field-collected material, and by brief reference to the natural habitats of the species.

SELECTION OF CITATIONS
SEARCH DETAIL
...