Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Int J Environ Health Res ; : 1-16, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576268

ABSTRACT

Salmonella enterica is known for its disease-causing serotypes, including Montevideo and Pomona. These serotypes have been found in various environments, including river water, sediments, food, and animals. However, the global spread of these serotypes has increased, leading to many reported infections and outbreaks. The goal of this study was the genomic analysis of 48 strains of S. Montevideo and S. Pomona isolated from different sources, including clinical. Results showed that environmental strains carried more antibiotic resistance genes than the clinical strains, such as genes for resistance to aminoglycosides, chloramphenicol, and sulfonamides. Additionally, the type 4 secretion system, was only found in environmental strains. .Also many phosphotransferase transport systems were identified and the presence of genes for the alternative pathway Entner-Doudoroff. The origin of isolation may have a significant impact on the ability of Salmonella isolates to adapt and survive in different environments, leading to genomic flexibility and a selection advantage.

2.
Viruses ; 15(11)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38005903

ABSTRACT

OBJECTIVE: The aim of this work was to analyze the metadata of the SARS-CoV-2 sequences obtained from samples collected in Mexico from 2020 to 2022. MATERIALS AND METHODS: Metadata of SARS-CoV-2 sequences from samples collected in Mexico up to 31 December 2022 was retrieved from GISAID and manually cured for interpretation. RESULTS: As of December 2022, Mexican health authorities and the scientific community have sequenced up to 81,983 SARS-CoV-2 viral genomes deposited in GISAID, representing 1.1% of confirmed cases. The number of sequences obtained per state corresponded to the gross domestic product (GDP) of each state for the first (Mexico City) and the last (Tlaxcala). Approximately 25% of the sequences were obtained from CoViGen-Mex, an interdisciplinary initiative of health and scientific institutions to collect and sequence samples nationwide. The metadata showed a clear dominance of sequences retrieved by women. A similar variant distribution over time was found in Mexico and overseas, with the Omicron variant predominating. Finally, the age group with the highest representation in the sequences was adults aged 21 to 50 years, accounting for more than 50% of the total. CONCLUSIONS: Mexico presents diverse sociodemographic and economic characteristics. The COVID-19 pandemic has been and continues to be a challenge for collaboration across the country and around the world.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Female , Humans , SARS-CoV-2/genetics , Mexico/epidemiology , Pandemics , COVID-19/epidemiology , Genomics , China
3.
Parasitol Res ; 122(11): 2641-2650, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37676306

ABSTRACT

Cyclospora cayetanensis is an enteric coccidian parasite responsible for gastrointestinal disease transmitted through contaminated food and water. It has been documented in several countries, mostly with low-socioeconomic levels, although major outbreaks have hit developed countries. Detection methods based on oocyst morphology, staining, and molecular testing have been developed. However, the current MLST panel offers an opportunity for enhancement, as amplification of all molecular markers remains unfeasible in the majority of samples. This study aims to address this challenge by evaluating two approaches for analyzing the genetic diversity of C. cayetanensis and identifying reliable markers for subtyping: core homologous genes and mitochondrial genome analysis. A pangenome was constructed using 36 complete genomes of C. cayetanensis, and a haplotype network and phylogenetic analysis were conducted using 33 mitochondrial genomes. Through the analysis of the pangenome, 47 potential markers were identified, emphasizing the need for more sequence data to achieve comprehensive characterization. Additionally, the analysis of mitochondrial genomes revealed 19 single-nucleotide variations that can serve as characteristic markers for subtyping this parasite. These findings not only contribute to the selection of molecular markers for C. cayetanensis subtyping, but they also drive the knowledge toward the potential development of a comprehensive genotyping method for this parasite.


Subject(s)
Cyclospora , Parasites , Animals , Cyclospora/genetics , Phylogeny , Multilocus Sequence Typing , Parasites/genetics , Genotyping Techniques , Biomarkers
4.
Lett Appl Microbiol ; 76(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37055371

ABSTRACT

This research aimed to evaluate the antimicrobial activity of essential oils (EOs) against clinically and environmentally isolated Salmonella serotypes. Oregano, thyme, and grapefruit EO compounds were identified, and the antimicrobial activity was evaluated against the S. Saintpaul, Oranienburg, and Infantis serotypes. In addition, molecular docking was performed to explore the possible mechanisms between compounds of EOs with microbial enzymes. Thymol was the main compound identified in oregano (44.0%) and thyme (31%) EOs, while d-limonene was present in a greater proportion in grapefruit EO. Oregano EO had the highest antimicrobial activity, followed by thyme and grapefruit EOs. Oregano and thyme EOs illustrated a greater inhibitory capacity to all serotypes, particularly with the environmental S. Saintpaul. Oregano EO presented values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration of 0.1 µL/mL for all serotypes, while thyme and grapefruit EOs presented MIC values of 0.1 µL/mL for the clinical serotypes S. Infantis and S. Oranienburg, respectively. Molecular docking analysis showed the optimal binding free energies for thymol and carvacrol with glucokinase, ATP-dependent-6-fructokinase, outer membrane porin C, and topoisomerase IV. Our results indicate that these EOs can inhibit clinically and environmentally isolated Salmonella serotypes and can be used as alternatives for developing natural food preservatives.


Subject(s)
Anti-Infective Agents , Oils, Volatile , Salmonella enterica , Thymus Plant , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Plant Oils/pharmacology , Thymol/pharmacology , Molecular Docking Simulation , Serogroup , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Thymus Plant/chemistry
5.
Gene ; 851: 146966, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36265748

ABSTRACT

Salmonella enterica serotype Oranienburg is a multi-host, ubiquitous, and prevalent Non-typhoidal Salmonella (NTS) in subtropical rivers, particularly in sediments; little studied so far possible the adaptation and establishment of this microorganism based on its genetic content. This study was focused on the first five genomes of S. Oranienburg in sediments through whole-genome sequencing (WGS) and 61 river water genomes isolated in previous studies. Results showed an open pangenome with 5,594 gene clusters (GCs), and the division of their categories showed; 3,303 core genes, 741 persistent genes, 1,282 accessory genes, and 268 unique genes. Additionally, it showed three main subclades within the same serotype and showed a conserved genetic content, suggesting the display of different adaptation strategies to its establishment. Nine genes for antimicrobial resistance were detected: aac (6') - Iy, H-NS, golS, marA, mdsABC, mdtK, and sdiA, and a mutation in the parC gene p. T57S generating a resistance. In addition, virulence genes and pathogenicity islands (SPI's) were analyzed, finding 92 genes and an identity above 80 % in the SPI's 1 to 5, and the centisomes 54 and 63. The environmental strains of S. Oranienburg do not represent a concern as multidrug resistance (MDR) bacterium; however, virulence genes remain a potential health risk. This study contributes to understanding its adaptation to aquatic environments in Mexico.


Subject(s)
Salmonella enterica , Serogroup , Virulence/genetics , Salmonella enterica/genetics , Salmonella , Anti-Bacterial Agents
6.
Virus Res ; 323: 198973, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36272541

ABSTRACT

Vibrio parahaemolyticus causes acute hepatopancreatic necrosis disease (AHPND) in farmed shrimp. Due to its damage potential, which could be as high as a 100% mortality rate, bacteriophages have emerged as a promising natural control intervention other than antibiotics, yet multiple roadblocks need to be overcome. In this study, six bacteriophages isolated from seafood samples, seawater, and estuary water in Sinaloa, Mexico, demonstrated a narrow host range among Mexican AHPND-causing V. parahaemolyticus. All bacteriophages are composed of a double-stranded DNA genome with lengths ranging between 43,268 and 57,805 bp. All six phages exhibited latency periods of 10-30 min and burst sizes of 34-168 viral particles per infected cell. The optimal MOI for bacteriophage propagation was 0.01-1. No transfer RNA (tRNA), virulence, or resistance genes were found in either genome, and the life cycle of these phages was classified as virulent by the PhageAI platform. Phylogenetic and comparative genomics analyzes assigned phages M3, C2, M9, and M83 as new species not yet reported within the genus Maculvirus, Autographiviridae family. ALK and CHI phages were assigned as new members of a new genus not yet classified within the subfamily Queuovirinae. The findings highlight the potential of CHI, ALK, M3, C2, M9, and M83 as promising alternatives against AHPND-causing V. parahaemolyticus from Mexico.

7.
Curr Microbiol ; 79(12): 385, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36329340

ABSTRACT

Mosquito-borne diseases such as malaria and dengue are global severe public health threats. Due to the lack of efficient control methods, alternative approaches to decreasing arboviral transmitted diseases are prioritized to reduce morbidity and mortality in every endemic region. Mosquito midgut bacteria play an essential role in physiological development, fitness, and the arthropods´ vectorial capacity. Bacteriophages are viruses that infect bacteria and are considered a promising biocontrol method by eliminating midgut microbiota that plays an essential role in mosquitoes´ health. Here, we isolate and identify 22 bacteria from mosquito´s midgut belonging to the genera Mesobacillus, Enterobacter, Klebsiella, Microbacterium, Micrococcus, Pantoea, Serratia, and Staphylococcus, mainly. Twelve phages with lytic activity against Enterobacter, Klebsiella, and Pantoea were also isolated. All 12 phages showed a double-stranded DNA genome, ranging from 36,790 to 149,913 bp, and were taxonomically classified as members of the Drexlerviridae family, Molineuxvirinae, Studiervirinae, and Vequintavirinae subfamilies. Open reading frames associated with phage structure, packing, host lysis, DNA metabolism, and additional functions were predicted in all 12 phage genomes, while tRNAs were predicted in five phage genomes. In addition, the life cycle was predicted as virulent for the 12 phages, and no antibiotic resistance, virulence, allergenic, or lysogenic genes were found in either genome. These findings suggest that the 12 phages have biocontrol potentials; however, it is necessary to elucidate specific bacterial host's roles and then the phages' ability to serve as effective vector control.


Subject(s)
Aedes , Bacteriophages , Pantoea , Animals , Bacteriophages/genetics , Aedes/microbiology , Mosquito Vectors , Genomics
8.
Microorganisms ; 10(6)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35744732

ABSTRACT

Salmonella enterica is a leading cause of human gastrointestinal disease worldwide. Given that Salmonella is persistent in aquatic environments, this study examined the prevalence, levels and genotypic diversity of Salmonella isolates recovered from major rivers in an important agricultural region in northwestern Mexico. During a 13-month period, a total of 143 river water samples were collected and subjected to size-exclusion ultrafiltration, followed by enrichment, and selective media for Salmonella isolation and quantitation. The recovered Salmonella isolates were examined by next-generation sequencing for genome characterization. Salmonella prevalence in river water was lower in the winter months (0.65 MPN/100 mL) and significantly higher in the summer months (13.98 MPN/100 mL), and a Poisson regression model indicated a negative effect of pH and salinity and a positive effect of river water temperature (p = 0.00) on Salmonella levels. Molecular subtyping revealed Oranienburg, Anatum and Saintpaul were the most predominant Salmonella serovars. Single nucleotide polymorphism (SNP)-based phylogeny revealed that the detected 27 distinct serovars from river water clustered in two major clades. Multiple nonsynonymous SNPs were detected in stiA, sivH, and ratA, genes required for Salmonella fitness and survival, and these findings identified relevant markers to potentially develop improved methods for characterizing this pathogen.

9.
Microbiol Resour Announc ; 11(6): e0004522, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35536031

ABSTRACT

Here, we present the complete genome sequence of Enterobacter phage vB_EcRAM-01, isolated from waters of the Río Abajo river, in Panama City, Panama. This phage has deployed lytic activity against the Enterobacter cloacae complex, a pathogen of clinical importance in intensive care units. It belongs to the Myoviridae family and has a double-stranded DNA genome that is 178,477 bp long and contains 293 open reading frames (ORFs).

10.
Virus Res ; 312: 198719, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35219760

ABSTRACT

Acute hepatopancreatic necrosis disease (AHPND) is a life-threatening disease to recently stocked shrimp. This disease is mainly caused by Vibrio parahaemolyticus and, to date, it has not been effectively controlled. Bacteriophages are a promising method to control bacterial diseases in aquaculture and multiple phages that infect Asian strains of V. parahaemolyticus have been described. However, few studies have characterized the bacteriophages that infect Latin American strains. Here, two lytic Vibrio phages (vB_VpaP_AL-1 and vB_VpaS_AL-2) were isolated from estuary water in Sinaloa, Mexico. The host ranges were tested using ten AHPND-causing strains isolated from Mexico and phage AL-1 was able to infect two strains while AL-2 infected four. One-step growth curve showed that AL-1 produced 85 PFU/cell and AL-2 produced 68 PFU/cell in 30 and 40 min, respectively. Both phages were able to tolerate temperatures ranging from 20 to 50 °C and pH values ranging from 4 to 10. Phages AL-1 and AL-2 have double-stranded DNA genomes of 42,854 bp and 58,457 bp, respectively. In total, 53 putative ORFs associated with the phage structure, packing, host lysis, DNA metabolism, and additional functions were predicted in the AL-1 genome, while 92 ORFs associated with the same functions as the AL-1 and 1 tRNA were predicted in the AL-2 genome. The lifecycle was classified as virulent for both phages. Morphology, phylogeny, and comparative genomic analyses assigned phage AL-1 as a new member of the genus Maculvirus in the Autographiviridae family, and phage AL-2 as a new member of the Siphoviridae family. These findings suggest that vB_VpaP_AL-1 and vB_VpaS_AL-2 are potential biocontrol agents against AHPND-causing V. parahaemolyticus from Mexico.


Subject(s)
Bacteriophages , Vibrio parahaemolyticus , Ephrin-A5/genetics , Genome, Viral , Genomics , Humans , Necrosis/genetics , Vibrio parahaemolyticus/genetics
11.
Int J Environ Health Res ; 32(5): 1155-1163, 2022 May.
Article in English | MEDLINE | ID: mdl-33251827

ABSTRACT

Salmonella in the environment have evolved genetically to maintain a stable cell metabolism. Nevertheless, a lack of common nutrients (such as glucose) causes these strains to metabolize alternative carbon sources. In this study, 21 strains of Salmonella Oranienburg isolated from subtropical river water were evaluated to compare their adaptation and preconditioning abilities for the consumption of environmental carbon sources (ECS). The results obtained in this study attributed important biological characteristics to the adaptation of the metabolism of Salmonella strains to diverse ECS; these characteristics include but are not limited to variations in plasticity and natural preconditioning in closely related microorganisms, such as environmental isolates belonging to the serotype Oranienburg.


Subject(s)
Rivers , Salmonella , Carbon , Salmonella/genetics , Serogroup , Water
12.
Int J Environ Health Res ; 32(7): 1529-1541, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33706620

ABSTRACT

The survival of Salmonella in subtropical river water depends on genetic and metabolic reorganization for the expression of alternative metabolic pathways in response to starvation, which allows Salmonella to use environmental carbon sources (C-sources). However, knowledge regarding the metabolic plasticity of Salmonella serotypes for C-source utilization when exposed to these conditions remains unclear. The aim of this study was to evaluate the metabolic response and level of environmental C-source consumption by environmental Salmonella (Oranienburg and Saintpaul) and clinical Salmonella (Typhi) serotypes by comparing laboratory growth against exposure to river water conditions. Metabolic characterization was performed using a Biolog® EcoPlateTM containing 31 C-sources. The results obtained under laboratory growth conditions showed that environmental serotypes used 74.1% of the C-sources, whereas the clinical serotype used 45.1%. In contrast, in river water, all strains used up to 96.7% of the C-sources. Salmonella exposure to river water increases its capacity to use environmental C-sources.


Subject(s)
Salmonella enterica , Carbon , Rivers , Salmonella/genetics , Salmonella enterica/genetics , Water
13.
Int J Environ Health Res ; 31(5): 518-529, 2021 Jul.
Article in English | MEDLINE | ID: mdl-31569961

ABSTRACT

Mango is highly consumed worldwide; nonetheless, its consumption has been related to foodborne outbreaks. This study was performed to evaluate bacterial transference during mango postharvest management and the feasibility of adopting chlorine dioxide as first choice disinfectant in mango packinghouse. Chlorine dioxide (3 and 5 ppm) and sodium hypochlorite (100 and 200 ppm) were evaluated at different turbidity and times against Salmonella Choleraesuis and Listeria monocytogenes. Bacterial transference was higher from water to fruit than vice-versa (49.17%). Chlorine dioxide (5 ppm) achieved the highest Salmonella reductions at low turbidity reaching 2.13 Log10 at 10 min; meanwhile, Listeria was totally reduced in all conditions. Bacterial decay kinetic showed that chlorine dioxide 5 ppm was 34-fold faster than sodium hypochlorite at 200 ppm in reducing 1 Log10 of Salmonella. Chlorine dioxide reached faster bacterial inactivation decay over sodium hypochlorite; its usage is safe and meets the regulatory standards set for mango processing.


Subject(s)
Chlorine Compounds/pharmacology , Disinfectants/pharmacology , Food Handling/methods , Fruit/microbiology , Listeria monocytogenes/drug effects , Mangifera/microbiology , Oxides/pharmacology , Salmonella/drug effects , Food Microbiology , Listeria monocytogenes/growth & development , Listeria monocytogenes/isolation & purification , Salmonella/growth & development , Salmonella/isolation & purification , Sodium Hypochlorite/pharmacology
14.
Curr Microbiol ; 77(12): 3851-3860, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32959087

ABSTRACT

Acute hepatopancreatic necrosis disease (AHPND) is a severe disease affecting recently stocked cultured shrimps. The disease is mainly caused by V. parahaemolyticus that harbors the pVA1 plasmid; this plasmid contains the pirA and pirB genes, which encode a delta-endotoxin. AHPND originated in China in 2009 and has since spread to several other Asian countries and recently to Latin America (2013). Many Asian strains have been sequenced, and their sequences are publicly accessible in scientific databases, but only four strains from Latin America have been reported. In this study, we analyzed nine pVA1-harboring V. parahaemolyticus sequences from strains isolated in Mexico along with the 38 previously available pVA1-harboring V. parahaemolyticus sequences and the reference strain RIMD 2210633. The studied sequences were clustered into three phylogenetic clades (Latin American, Malaysian, and Cosmopolitan) through pangenomic and phylogenomic analysis. The nucleotide sequence alignment of the pVA1 plasmids harbored by the Asian and Latin American strains confirmed that the main structural difference in the plasmid between the Asian and Latin American strains is the absence of the Tn3 transposon in the Asian strains; in addition, some deletions in the pirAB region were found in two of the Latin American strains. Our study represents the most robust and inclusive phylogenomic analysis of pVA1-harboring V. parahaemolyticus conducted to date and provides insight into the epidemiology of AHPND. In addition, this study highlights that disease diagnosis through the detection of the pirA and pirB genes is an inadequate approach due to the instability of these genes.


Subject(s)
Penaeidae , Vibrio parahaemolyticus , Animals , China , Latin America , Mexico , Necrosis , Phylogeny , Vibrio parahaemolyticus/genetics
15.
Food Environ Virol ; 11(1): 32-39, 2019 03.
Article in English | MEDLINE | ID: mdl-30673939

ABSTRACT

The buffalo green monkey (BGM) cell line is required for the detection of enteric viruses in biosolids through a total culturable viral assay (TCVA) by the United States Environmental Protection Agency. In the present study, BGM and PLC/PRF/5 cell lines were evaluated for TCVA and for their use in determining the incidence of adenoviruses and enteroviruses in raw sludge and Class B biosolids. Six raw sludge and 17 Class B biosolid samples were collected from 13 wastewater treatment plants from seven U.S. states. Samples were processed via organic flocculation and concentrate volumes equivalent to 4 g total solids were assayed on BGM and PLC/PRF/5 cells. Cell monolayers were observed for cytopathic effect (CPE) after two 14-days passages. Cell lysates were tested for the presence of adenoviruses and enteroviruses by PCR or RT-PCR. The PLC/PRF/5 cells detected more culturable viruses than the BGM cells by CPE (73.9% vs. 56.5%, respectively). 52% of the samples were positive for CPE using both cell lines. No viruses were detected in either cell line by PCR in flasks in which CPE was not observed. No adenoviruses were detected in 13 CPE-positive samples from BGM lysates. In contrast, of the 17 samples exhibiting CPE on PLC/PRF/5 cells, 14 were positive for adenoviruses (82.4%). In conclusion, PLC/PRF/5 cells were superior for the detection of adenoviruses in both raw sludge and Class B biosolids. Thus, the use of BGM cells alone for TCVA may underestimate the viral concentration in sludge/biosolid samples.


Subject(s)
Cell Line , Enterovirus/genetics , Enterovirus/isolation & purification , Sewage/virology , Virology/methods , Animals , Cell Line/cytology , Cell Line/virology , Cercopithecinae , Polymerase Chain Reaction/methods
16.
PLoS One ; 13(5): e0195023, 2018.
Article in English | MEDLINE | ID: mdl-29763937

ABSTRACT

Escherichia coli O157:H7 has become a global public health and a food safety problem. Despite the implementation of control strategies that guarantee the safety in various products, outbreaks persist and new alternatives are necessary to reduce this pathogen along the food chain. Recently, our group isolated and characterised lytic bacteriophages against E. coli O157:H7 with potential to be used as biocontrol agents in food. To this end, phages need certain requirements to allow their manufacture and application. The aim of this study was to determine the physical stability and allergenic potential of free and microencapsulated (ME) bacteriophage cocktails against E. coli O157:H7. In vitro and in vivo studies were performed to determine phage survival under different pH, gastrointestinal conditions, temperature and UV light intensities. Results showed that the stability of ME phages was significantly (P<0.05) higher than free phages after ultraviolet irradiation, pH conditions between 3 to 7, and exposure to temperatures between at -80°C and 70°C. Both formulations were highly sensitive to very low pH in simulated gastric fluid, but stable in bile salts. In vivo studies in mice confirmed these phages passed through the gastrointestinal tract and were excreted in faeces. In silico, full-length alignment analysis showed that all phage proteins were negative for allergenic potential, but different predicting criteria classified seven phage proteins with a very low probability to be an allergen. In conclusion, these data demonstrated that microencapsulation provided a greater stability to phage formulation under stress conditions and assure a more suitable commercial formulation for the biological control of E. coli O157:H7.


Subject(s)
Allergens , Bacteriophages/physiology , Escherichia coli Infections/prevention & control , Escherichia coli O157/virology , Food Contamination/prevention & control , Animals , Escherichia coli Infections/microbiology , Escherichia coli Infections/transmission , Escherichia coli O157/growth & development , Mice , Mice, Inbred BALB C
17.
Environ Monit Assess ; 190(4): 221, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29546664

ABSTRACT

Survival of bacterial pathogens in different environments is due, in part, to their ability to form biofilms. Four wild-type Salmonella enterica strains, two Oranienburg and two Saintpaul isolated from river water and animal feces, were tested for biofilm formation at the air-liquid interface under stressful conditions (pH and salinity treatments such as pH 3, NaCl 4.5 w/v; pH 7, NaCl 4.5 w/v; pH 10, NaCl 4.5 w/v; pH 3, Nacl 0.5 w/v; pH 7, NaCl 0.5 w/v; and pH 10, NaCl 0.5 w/v); Salmonella Typhimurium DT104 was used as a control strain. Salmonella Oranienburg and Saintpaul from feces were moderately hydrophobic and motile, while S. Saintpaul from water and the control strain S. Typhimurium showed high hydrophobicity, which helped them form more resistant biofilms than S. Oranienburg. Under stressful conditions, all strains experienced difficulties in forming biofilms. Salmonella Saintpaul and Typhimurium expressed the red dry and rough (RDAR) morphotype and were able to form biofilm at air-liquid interface, contrarily to Oranienburg that showed incomplete rough morphology. This study contributes to the knowledge of biofilm formation as a survival strategy for Salmonella in aquatic environments.


Subject(s)
Biofilms/growth & development , Environmental Monitoring , Salmonella enterica/growth & development , Water Microbiology , Animals
18.
Int J Environ Health Res ; 28(1): 43-54, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29249164

ABSTRACT

This study was performed to evaluate in vitro the adherence and invasiveness capacity of Salmonella Oranienburg and Saintpaul (isolated from river water) exposed to laboratory and river water growth conditions and inoculated into epithelial HEp-2 cell. Results showed that Salmonella Oranienburg and Salmonella Saintpaul showed lower ability to adhere and invade epithelial HEp-2 cells under both growth conditions as compared to Salmonella Typhimurium reference strain. S. Oranienburg adhesion capacity was not affected by the growth conditions, while S. Saintpaul exposed to river water significantly (p < 0.05) decreased its adhesion capacity by 75.7 %. On the contrary, S. Oranienburg exposed to river water reduced its invasion efficiency by 80 %, whereas S. Saintpaul showed no differences between growth conditions. In conclusion, this study suggests that the exposure to non-host conditions, such as river water, adversely affects the adhesion and invasiveness of Salmonella serotypes differently, impacting on their ability to re-enter a new host.


Subject(s)
Rivers/microbiology , Salmonella/pathogenicity , Bacterial Adhesion , Cell Death , Cell Line , Genes, Bacterial , Humans , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/physiology , Virulence
19.
Int J Environ Health Res ; 27(4): 252-263, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28565917

ABSTRACT

Long-term exposure to river water by non-indigenous micro-organisms such as Salmonella may affect metabolic adaptation to carbon sources. This study was conducted to determine differences in carbon source utilization of Salmonella Oranienburg and Salmonella Saintpaul (isolated from tropical river water) as well as the control strain Salmonella Typhimurium exposed to laboratory, river water, and host cells (Hep-2 cell line) growth conditions. Results showed that Salmonella Oranienburg and Salmonella Saintpaul showed better ability for carbon source utilization under the three growth conditions evaluated; however, S. Oranienburg showed the fastest and highest utilization on different carbon sources, including D-Glucosaminic acid, N-acetyl-D-Glucosamine, Glucose-1-phosphate, and D-Galactonic acid, while Salmonella Saintpaul and S. Typhimurium showed a limited utilization of carbon sources. In conclusion, this study suggests that environmental Salmonella strains show better survival and preconditioning abilities to external environments than the control strain based on their plasticity on diverse carbon sources use.


Subject(s)
Carbon/metabolism , Rivers/microbiology , Salmonella enterica/metabolism , Salmonella enterica/genetics , Serogroup
20.
Wilderness Environ Med ; 27(3): 379-85, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27591708

ABSTRACT

OBJECTIVE: In developing countries, rural communities often face the lack of potable water infrastructure and must rely on untreated sources for drinking, which are often contaminated with waterborne pathogens. The use of home water treatment devices is seen as one means of reducing the risk of exposure to waterborne pathogens. The aim of this study was to evaluate the microbiological and physicochemical performance of a simple in-home point-of-use device based on gravity ultrafiltration through an ultrafilter membrane. METHODS: Twenty-five randomly selected households from 2 rural communities in Culiacán, Mexico, were enrolled. Water samples were collected before and after treatment and during storage for a period of 8 weeks. Heterotrophic bacteria, total coliforms, fecal coliforms, Escherichia coli, and Giardia spp were quantified, as well as various physicochemical parameters. RESULTS: All of the untreated water samples contained high levels of indicator bacteria, but none were detected in the treated water fulfilling the requirements set by the Mexican Norm (NOM-127-SSA1-1994) and the World Health Organization guidelines for drinking water. However, indicator bacteria (fecal coliforms and E coli) were detected in every sample from water stored 24 hours after treatment. CONCLUSION: This study demonstrated that point-of-use filters using gravity-fed ultrafilters are a low-cost, effective water treatment technology for water of poor microbial quality. However, further identification of the sources and mechanisms by which water is contaminated when stored after treatment will help with designing and implementing better strategies for keeping water safe for domestic use.


Subject(s)
Drinking Water/microbiology , Ultrafiltration/methods , Water Purification/methods , Enterobacteriaceae , Equipment Design , Escherichia coli , Gravitation , Mexico , Rural Population , Ultrafiltration/instrumentation , Water Microbiology , Water Purification/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...