Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Eng Mater ; 2(6): 1515-1525, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38962722

ABSTRACT

Polymer membranes employed in gas separation play a pivotal role in advancing environmental sustainability, energy production, and gas purification technologies. Despite their significance, the current design and manufacturing of these membranes lack cradle-to-cradle approaches, contributing to plastic waste pollution. This study explores emerging solutions, including the use of biodegradable biopolymers such as polyhydroxybutyrate (PHB) and membrane recycling, with a focus on the specific impact of mechanical recycling on the performance of biodegradable gas separation membranes. This research represents the first systematic exploration of recycling biodegradable membranes for gas separation. Demonstrating that PHB membranes can be recycled and remanufactured without solvents using hot-melt extrusion and 3D printing, the research highlights PHB's promising performance in developing more sustainable CO2 separations, despite an increase in gas permeability with successive recycling steps due to reduced polymer molecular weight. The study emphasizes the excellent thermal, chemical, and mechanical stability of PHB membranes, albeit with a marginal reduction in gas selectivity upon recycling. However, limitations in PHB's molecular weight affecting extrudability and processability restrict the recycling to three cycles. Anticipating that this study will serve as a foundational exploration, we foresee more sophisticated recycling studies for gas separation membranes, paving the way for a circular economy in future membrane technologies.

2.
ACS Sens ; 9(4): 1666-1681, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38551608

ABSTRACT

The hormone cortisol, released as the end-product of the hypothalamic-pituitary-adrenal (HPA) axis, has a well-characterized circadian rhythm that enables an allostatic response to external stressors. When the pattern of secretion is disrupted, cortisol levels are chronically elevated, contributing to diseases such as heart attacks, strokes, mental health disorders, and diabetes. The diagnosis of chronic stress and stress related disorders depends upon accurate measurement of cortisol levels; currently, it is quantified using mass spectroscopy or immunoassay, in specialized laboratories with trained personnel. However, these methods are time-consuming, expensive and are unable to capture the dynamic biorhythm of the hormone. This critical review traces the path of cortisol detection from traditional laboratory-based methods to decentralised cortisol monitoring biosensors. A complete picture of cortisol biology and pathophysiology is provided, and the importance of precision medicine style monitoring of cortisol is highlighted. Antibody-based immunoassays still dominate the pipeline of development of point-of-care biosensors; new capture molecules such as aptamers and molecularly imprinted polymers (MIPs) combined with technologies such as microfluidics, wearable electronics, and quantum dots offer improvements to limit of detection (LoD), specificity, and a shift toward rapid or continuous measurements. While a variety of different sensors and devices have been proposed, there still exists a need to produce quantitative tests for cortisol ─ using either rapid or continuous monitoring devices that can enable a personalized medicine approach to stress management. This can be addressed by synergistic combinations of technologies that can leverage low sample volumes, relevant limit of detection and rapid testing time, to better account for cortisol's shifting biorhythm. Trends in cortisol diagnostics toward rapid and continuous monitoring of hormones are highlighted, along with insights into choice of sample matrix.


Subject(s)
Biosensing Techniques , Hydrocortisone , Hydrocortisone/analysis , Humans , Biosensing Techniques/methods , Immunoassay/methods
3.
ACS Appl Mater Interfaces ; 15(48): 56600-56611, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37991322

ABSTRACT

Gas separation polymer membranes play a pivotal role in various industrial processes including carbon capture and hydrogen production. However, the inherent trade-off between permeability and selectivity coupled with challenges in membrane manufacturing has hindered their widespread industrial deployment. To address the permselectivity challenges, researchers have explored increasingly complex polymers, composite systems, and other materials. In this study, we introduce a novel membrane manufacturing technique called "electro-casting" that not only enables efficient membrane fabrication but also enhances the trade-off of traditional polymer-based membranes. We fabricated cellulose acetate (CA) membranes embedded with 1-ethyl-3-methyl imidazolium via electro-casting and performed a comparative analysis of structural, morphological, and gas transport characteristics against membranes made via conventional casting techniques. We discovered that electro-casted membranes exhibited a unique crystalline structure, surface topology that induced a remarkable 200% improvement in CO2/N2 selectivity and a 110% increase in CO2/CH4 selectivity. The electric field generated during the manufacturing process played a crucial role in altering the supramolecular structure of the polymer, thereby increasing the separation properties of the membranes as well as their thermal and mechanical features. Electro-casting induced a polymer crystallization effect that disrupted the permeability-selectivity trade-off observed in conventional membranes, while producing highly stable membranes. Moreover, the simplicity of this manufacturing method and its significant impact on membrane properties have the potential to accelerate the deployment of gas separation membranes, facilitating the transition toward a NetZero chemical industry.

4.
RSC Adv ; 13(21): 14198-14209, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37180016

ABSTRACT

State-of-the-art gas separation membrane technologies combine the properties of polymers and other materials, such as metal-organic frameworks to yield mixed matrix membranes (MMM). Although, these membranes display an enhanced gas separation performance, when compared to pure polymer membranes; major challenges remain in their structure including, surface defects, uneven filler dispersion and incompatibility of constituting materials. Therefore, to avoid these structural issues posed by today's membrane manufacturing methodologies, we employed electrohydrodynamic emission and solution casting as a hybrid membrane manufacturing method, to produce ZIF-67/cellulose acetate asymmetric membranes with improved gas permeability and selectivity for CO2/N2, CO2/CH4, and O2/N2. Rigorous molecular simulations were used to reveal the key ZIF-67/cellulose acetate interfacial phenomena (e.g., higher density, chain rigidity, etc.) that must be considered when engineering optimum composite membranes. In particular, we demonstrated that the asymmetric configuration effectively leverages these interfacial features to generate membranes superior to MMM. These insights coupled with the proposed manufacturing technique can accelerate the deployment of membranes in sustainable processes such as carbon capture, hydrogen production, and natural gas upgrading.

5.
J Pharm Sci ; 109(10): 3027-3034, 2020 10.
Article in English | MEDLINE | ID: mdl-32623002

ABSTRACT

Pharmaceutical co-crystals (CCs) are multicomponent materials that enable the development of novel therapeutic products by enhancing the properties of active pharmaceutical ingredients, such as solubility, permeability and bioavailability. Currently, CCs are a commercial reality; nonetheless, their industrial production remains a challenge due to problems related to scale up, control and mode of preparation, which usually relies on batch production rather than continuous. This paper describes the implementation of a concurrent coaxial antisolvent electrospray (Co-E), as a new manufacturing technique, for the synthesis of CCs in a rapid, continuous and controlled manner. The features of Co-E were sized against other co-crystallization methods such as antisolvent crystallization, neat and liquid assisted grinding. Three pairs of amino acids were used as model compounds to demonstrate the features of this new system. The Co-E displayed exclusive product characteristics, including spherical particle morphology and enhanced CC formation. This technique exhibited robustness against process disturbances, displaying consistent product characteristics. Co-E represents a new alternative for the reliable production of CCs and other pharmaceutical products.


Subject(s)
Crystallization , Particle Size , Solubility
6.
Int J Pharm ; 566: 615-630, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31158454

ABSTRACT

In this work, the transfer of oral solid dosage forms, currently manufactured via wet granulation, to a continuous direct compression process was considered. Two main challenges were addressed: (1) a poorly flowing API (Canagliflozin) and (2) high drug loading (51 wt%). A scientific approach was utilised for formulation development, targeting flow and compaction behaviour suitable for manufacturing scale. This was achieved through systematic screening of excipients to identify feasible formulations. Targeted design of experiments based on factors such as formulation mixture and processing parameters were utilised to investigate key responses for tablet properties, flow and compaction behaviour. Flow behaviour was primarily evaluated from percentage compressibility and shear cell testing on a powder flow rheometer (FT4). The compaction behaviour was studied using a compaction simulator (Gamlen). The relationships between tablet porosity, tensile strength and compaction pressure were used to evaluate tabletability, compactibility and compressibility to assess scale-up. The success of this design procedure is illustrated by scaling up from the compaction simulator to a Riva Piccola rotary tablet press, while maintaining critical quality attributes (CQAs). Compactibility was identified as a suitable scale-up relationship. The developed procedure should allow accelerated development of formulations for continuous direct compression.


Subject(s)
Drug Compounding/methods , Canagliflozin/chemistry , Excipients/chemistry , Particle Size , Porosity , Powders , Rheology , Tablets , Tensile Strength
7.
Nat Commun ; 10(1): 587, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718495

ABSTRACT

Culture contamination, end-product toxicity, and energy efficient product recovery are long-standing bioprocess challenges. To solve these problems, we propose a high-pressure fermentation strategy, coupled with in situ extraction using the abundant and renewable solvent supercritical carbon dioxide (scCO2), which is also known for its broad microbial lethality. Towards this goal, we report the domestication and engineering of a scCO2-tolerant strain of Bacillus megaterium, previously isolated from formation waters from the McElmo Dome CO2 field, to produce branched alcohols that have potential use as biofuels. After establishing induced-expression under scCO2, isobutanol production from 2-ketoisovalerate is observed with greater than 40% yield with co-produced isopentanol. Finally, we present a process model to compare the energy required for our process to other in situ extraction methods, such as gas stripping, finding scCO2 extraction to be potentially competitive, if not superior.


Subject(s)
Biofuels , Carbon Dioxide/metabolism , Bacillus megaterium/metabolism , Butanols/metabolism , Fermentation , Hemiterpenes , Keto Acids/metabolism , Pentanols/metabolism
8.
Membranes (Basel) ; 6(3)2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27657143

ABSTRACT

Palladium-based catalytic membrane reactors (CMRs) effectively remove H2 to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H2, CO and CO2. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H2O, CO2 and H2. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H2 and induce higher methane and CO conversions while yielding ultrapure H2 and compressed CO2 ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H2 permeance and purity, high CH4 conversion levels and reduced CO yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...