Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomicrofluidics ; 10(4): 043504, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27375826

ABSTRACT

We use a microfluidic flow-focusing device with integrated electrodes for controlling the production of water-in-oil drops. In a previous work, we reported that very long jets can be formed upon application of AC fields. We now study in detail the appearance of the long jets as a function of the electrical parameters, i.e., water conductivity, signal frequency, and voltage amplitude. For intermediate frequencies, we find a threshold voltage above which the jet length rapidly increases. Interestingly, this abrupt transition vanishes for high frequencies of the signal and the jet length grows smoothly with voltage. For frequencies below a threshold value, we previously reported a transition from a well-behaved uniform jet to highly unstable liquid structures in which axisymmetry is lost rather abruptly. These liquid filaments eventually break into droplets of different sizes. In this work, we characterize this transition with a diagram as a function of voltage and liquid conductivity. The electrical response of the long jets was studied via a distributed element circuit model. The model allows us to estimate the electric potential at the tip of the jet revealing that, for any combination of the electrical parameters, the breakup of the jet occurs at a critical value of this potential. We show that this voltage is around 550 V for our device geometry and choice of flow rates.

2.
Lab Chip ; 11(12): 2023-9, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21431188

ABSTRACT

A new regime of operation of PDMS-based flow-focusing microfluidic devices is presented. We show that monodisperse microbubbles with diameters below one-tenth of the channel width (here w = 50 µm) can be produced in low viscosity liquids thanks to a strong pressure gradient in the entrance region of the channel. In this new regime bubbles are generated at the tip of a long and stable gas ligament whose diameter, which can be varied by tuning appropriately the gas and liquid flow rates, is substantially smaller than the channel width. Through this procedure the volume of the bubbles formed at the tip of the gas ligament can be varied by more than two orders of magnitude. The experimental results for the bubble diameter d(b) as function of the control parameters are accounted for by a scaling theory, which predicts d(b)/w ∝ (µ(g)/µ(l))(1/12)(Q(g)/Q(l))(5/12), where µ(g) and µ(l) indicate, respectively, the gas and liquid viscosities and Q(g) and Q(l) are the gas and liquid flow rates. As a particularly important application of our results we produce monodisperse bubbles with the appropriate diameter for therapeutic applications (d(b) ≃ 5 µm) and a production rate exceeding 10(5) Hz.


Subject(s)
Microbubbles , Microfluidic Analytical Techniques/instrumentation , Contrast Media , Gases , Microfluidic Analytical Techniques/methods , Particle Size , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...