Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Ecol Evol ; 4(4): 660, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32203480

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Ecol Evol ; 4(4): 550-559, 2020 04.
Article in English | MEDLINE | ID: mdl-32123320

ABSTRACT

Unprecedented species loss in diverse forests indicates the urgent need to test its consequences for ecosystem functioning. However, experimental evaluation based on realistic extinction scenarios is lacking. Using species interaction networks we introduce an approach to separate effects of node loss (reduced species number) from effects of link loss or compensation (reduced or increased interspecific interactions) on ecosystem functioning along directed extinction scenarios. By simulating random and non-random extinction scenarios in an experimental subtropical Chinese forest, we find that species loss is detrimental for stand volume in all scenarios, and that these effects strengthen with age. However, the magnitude of these effects depends on the type of attribute on which the directed species loss is based, with preferential loss of evolutionarily distinct species and those from small families having stronger effects than those that are regionally rare or have high specific leaf area. These impacts were due to both node loss and link loss or compensation. At high species richness (reductions from 16 to 8 species), strong stand-volume reduction only occurred in directed but not random extinction. Our results imply that directed species loss can severely hamper productivity in already diverse young forests.


Subject(s)
Ecosystem , Trees , Biodiversity , Forests , Plant Leaves
3.
Science ; 362(6410): 80-83, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30287660

ABSTRACT

Biodiversity experiments have shown that species loss reduces ecosystem functioning in grassland. To test whether this result can be extrapolated to forests, the main contributors to terrestrial primary productivity, requires large-scale experiments. We manipulated tree species richness by planting more than 150,000 trees in plots with 1 to 16 species. Simulating multiple extinction scenarios, we found that richness strongly increased stand-level productivity. After 8 years, 16-species mixtures had accumulated over twice the amount of carbon found in average monocultures and similar amounts as those of two commercial monocultures. Species richness effects were strongly associated with functional and phylogenetic diversity. A shrub addition treatment reduced tree productivity, but this reduction was smaller at high shrub species richness. Our results encourage multispecies afforestation strategies to restore biodiversity and mitigate climate change.


Subject(s)
Biodiversity , Climate Change , Extinction, Biological , Forests , Trees/classification , Carbon/analysis , Phylogeny , Trees/physiology
4.
Ecol Evol ; 7(24): 10652-10674, 2017 12.
Article in English | MEDLINE | ID: mdl-29299246

ABSTRACT

Biodiversity-ecosystem functioning (BEF) research has extended its scope from communities that are short-lived or reshape their structure annually to structurally complex forest ecosystems. The establishment of tree diversity experiments poses specific methodological challenges for assessing the multiple functions provided by forest ecosystems. In particular, methodological inconsistencies and nonstandardized protocols impede the analysis of multifunctionality within, and comparability across the increasing number of tree diversity experiments. By providing an overview on key methods currently applied in one of the largest forest biodiversity experiments, we show how methods differing in scale and simplicity can be combined to retrieve consistent data allowing novel insights into forest ecosystem functioning. Furthermore, we discuss and develop recommendations for the integration and transferability of diverse methodical approaches to present and future forest biodiversity experiments. We identified four principles that should guide basic decisions concerning method selection for tree diversity experiments and forest BEF research: (1) method selection should be directed toward maximizing data density to increase the number of measured variables in each plot. (2) Methods should cover all relevant scales of the experiment to consider scale dependencies of biodiversity effects. (3) The same variable should be evaluated with the same method across space and time for adequate larger-scale and longer-time data analysis and to reduce errors due to changing measurement protocols. (4) Standardized, practical and rapid methods for assessing biodiversity and ecosystem functions should be promoted to increase comparability among forest BEF experiments. We demonstrate that currently available methods provide us with a sophisticated toolbox to improve a synergistic understanding of forest multifunctionality. However, these methods require further adjustment to the specific requirements of structurally complex and long-lived forest ecosystems. By applying methods connecting relevant scales, trophic levels, and above- and belowground ecosystem compartments, knowledge gain from large tree diversity experiments can be optimized.

5.
PLoS One ; 11(12): e0167771, 2016.
Article in English | MEDLINE | ID: mdl-27936198

ABSTRACT

Research about biodiversity-productivity relationships has focused on herbaceous ecosystems, with results from tree field studies only recently beginning to emerge. Also, the latter are concentrated largely in the temperate zone. Tree species diversity generally is much higher in subtropical and tropical than in temperate or boreal forests, with reasons not fully understood. Niche overlap and thus complementarity in the use of resources that support productivity may be lower in forests than in herbaceous ecosystems, suggesting weaker productivity responses to diversity change in forests. We studied stand basal area, vertical structure, leaf area, and their relationship with tree species richness in a subtropical forest in south-east China. Permanent forest plots of 30 x 30 m were selected to span largely independent gradients in tree species richness and secondary successional age. Plots with higher tree species richness had a higher stand basal area. Also, stand basal area increases over a 4-year census interval were larger at high than at low diversity. These effects translated into increased carbon stocks in aboveground phytomass (estimated using allometric equations). A higher variability in tree height in more diverse plots suggested that these effects were facilitated by denser canopy packing due to architectural complementarity between species. In contrast, leaf area was not or even negatively affected by tree diversity, indicating a decoupling of carbon accumulation from leaf area. Alternatively, the same community leaf area might have assimilated more C per time interval in more than in less diverse plots because of differences in leaf turnover and productivity or because of differences in the display of leaves in vertical and horizontal space. Overall, our study suggests that in species-rich forests niche-based processes support a positive diversity-productivity relationship and that this translates into increased carbon storage in long-lived woody structures. Given the high growth rates of these forests during secondary succession, our results further indicate that a forest management promoting tree diversity after disturbance may accelerate CO2 sequestration from the atmosphere and thus be relevant in a climate-change context.


Subject(s)
Biodiversity , Carbon Dioxide/metabolism , Carbon Sequestration , Forests , Plant Leaves/physiology , Trees/physiology , Biomass , Carbon/metabolism , China , Climate Change , Plant Leaves/anatomy & histology , Trees/anatomy & histology , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...