Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biochem Cell Biol ; 89: 34-41, 2017 08.
Article in English | MEDLINE | ID: mdl-28558995

ABSTRACT

Low density lipoprotein receptor-related protein 1 (LRP1) is involved in the catabolism of many ligands, including factor VIII (FVIII) and alpha-2-macroglobulin (α2M). Transfer of FVIII to LRP1 is currently believed to be preceded by pre-concentration on the cell surface, by interacting with a so far unidentified component. In the present study, we used confocal microscopy and flow cytometry to compare endocytosis of FVIII and α2M using U87MG cells. The results show that α2M is rapidly internalized and does not compete for LRP1 mediated internalization of FVIII. FVIII endocytosis did not occur in the presence of receptor-associated-protein (RAP), but FVIII remained visible as a striated fluorescent pattern at the cell borders. In the presence of Von Willebrand Factor (VWF), no FVIII was observed on or within the cells, suggesting that VWF blocks interaction with both cell surface and LRP1. The same dual inhibition has previously been observed for FVIII C1 domain directed monoclonal antibody KM33. Elimination of the KM33 epitope by replacing FVIII C1 residues 2091-2095 and 2155-2160 for the homologues from factor V (FV), however, did not impair FVIII endocytosis. These membrane spikes alone were insufficient for cellular uptake, because FV was neither internalized by U87MG cells nor capable of effectively competing for FVIII endocytosis. These results show that FVIII endocytosis is driven by interaction with LRP1, but at the same time involves the spikes in the C1 domain that have been implicated in lipid binding.


Subject(s)
Cell Membrane/metabolism , Endocytosis , Factor VIII/chemistry , Factor VIII/metabolism , Cell Line , Humans , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Models, Molecular , Protein Binding , Protein Domains
2.
J Biol Chem ; 288(1): 393-400, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23168412

ABSTRACT

Complex formation between coagulation factor VIII (FVIII) and von Willebrand factor (VWF) is of critical importance to protect FVIII from rapid in vivo clearance and degradation. We have now employed a chemical footprinting approach to identify regions on VWF involved in FVIII binding. To this end, lysine amino acid residues of VWF were chemically modified in the presence of FVIII or activated FVIII, which does not bind VWF. Nano-LC-MS analysis showed that the lysine residues of almost all identified VWF peptides were not differentially modified upon incubation of VWF with FVIII or activated FVIII. However, Lys-773 of peptide Ser-766-Leu-774 was protected from chemical modification in the presence of FVIII. In addition, peptide Ser-764-Arg-782, which comprises the first 19 amino acid residues of mature VWF, showed a differential modification of both Lys-773 and the α-amino group of Ser-764. To verify the role of Lys-773 and the N-terminal Ser-764 in FVIII binding, we employed VWF variants in which either Lys-773 or Ser-764 was replaced with Ala. Surface plasmon resonance analysis and competition studies revealed that VWF(K773A) exhibited reduced binding to FVIII and the FVIII light chain, which harbors the VWF-binding site. In contrast, VWF(S764A) revealed more effective binding to FVIII and the FVIII light chain compared with WT VWF. The results of our study show that the N terminus of VWF is critical for the interaction with FVIII and that Ser-764 and Lys-773 have opposite roles in the binding mechanism.


Subject(s)
Factor VIII/chemistry , Lysine/chemistry , Serine/chemistry , von Willebrand Factor/chemistry , Amino Acid Sequence , Binding Sites , Dose-Response Relationship, Drug , Humans , Kinetics , Mass Spectrometry/methods , Molecular Conformation , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...