ABSTRACT
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.
ABSTRACT
We investigate the unusual magnetic, thermodynamic and transport properties of nearly-critical, weakly-itinerant ferromagnets with the general formula UTX, where T=Rh, Co and X=Ge, Si. As a unique feature of these systems, we show how changes in the V(df) hybridization, which controls their proximity to a ferromagnetic instability, determine the evolution of the ground state magnetization, M(0), the Curie temperature, T(C), the density of states at the Fermi level, N(E(F)), the T(2) resistivity coefficient, A, and the specific heat coefficient, γ. The universal aspect of our findings comes from the dependence on only two parameters: the transition metal T(d) bandwidth, W(d), and the distance between the T(d) and U(f) band centers, C(T(d)) - C(U(f)). We discuss our results in connection to data for URh(1-x)Co(x)Ge.
Subject(s)
Iron/chemistry , Magnets , Models, Chemical , Models, Molecular , Quantum Theory , Computer Simulation , Magnetic Fields , TemperatureABSTRACT
We establish the phase diagram of the one-dimensional anisotropic Kondo lattice model at T = 0 using a generalized two-dimensional classical Coulomb gas description. We analyze the problem by means of a renormalization group treatment. We find that the phase diagram contains regions of paramagnetism, partial and full ferromagnetic order.