Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 12: 660793, 2021.
Article in English | MEDLINE | ID: mdl-34149616

ABSTRACT

Metformin is an antidiabetic drug used for the treatment of diabetes and metabolic diseases. Imbalance in the autonomic nervous system (ANS) is associated with metabolic diseases. This study aimed to test whether metformin could improve ANS function in obese rats. Obesity was induced by neonatal treatment with monosodium L-glutamate (MSG). During 21-100 days of age, MSG-rats were treated with metformin 250 mg/kg body weight/day or saline solution. Rats were euthanized to evaluate biometric and biochemical parameters. ANS electrical activity was recorded and analyzed. Metformin normalized the hypervagal response in MSG-rats. Glucose-stimulated insulin secretion in isolated pancreatic islets increased in MSG-rats, while the cholinergic response decreased. Metformin treatment normalized the cholinergic response, which involved mostly the M3 muscarinic acetylcholine receptor (M3 mAChR) in pancreatic beta-cells. Protein expression of M3 mAChRs increased in MSG-obesity rats, while metformin treatment decreased the protein expression by 25%. In conclusion, chronic metformin treatment was effective in normalizing ANS activity and alleviating obesity in MSG-rats.


Subject(s)
Autonomic Nervous System/drug effects , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Obesity/drug therapy , Acetylcholine/pharmacology , Animals , Glucose/pharmacology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Male , Neostigmine/pharmacology , Obesity/chemically induced , Obesity/metabolism , Obesity/physiopathology , Rats, Wistar , Receptor, Muscarinic M3/metabolism , Sodium Glutamate , Vagus Nerve/drug effects , Vagus Nerve/physiology
2.
Nat Prod Res ; 35(10): 1682-1685, 2021 May.
Article in English | MEDLINE | ID: mdl-31198053

ABSTRACT

Hydro-distilled essential oil from leaves of Xylopia laevigata was characterized by GC-MS. Twenty-seven components were identified and the oil's major constituents comprised germacrene D, bicyclogermacrene, (E)-caryophyllene and germacrene B. The cytotoxicity of the essential oil of X. laevigata (EOXL), determined by MTT and mitotic index methods in cultured human lymphocytes was observed in all tested concentrations. Cultures treated with EOXL demonstrated significant increase in the frequencies of micronuclei in the cytokinesis-block micronucleus assay (CBMN) and reduction of the cytokinesis-block proliferation index (CBPI) rates. Results demonstrated the cytostatic and mutagenic effects of EOXL, the latter for the first time.


Subject(s)
Cytostatic Agents/pharmacology , Lymphocytes/drug effects , Mutagens/pharmacology , Oils, Volatile/pharmacology , Xylopia/chemistry , Cells, Cultured , Cytostatic Agents/chemistry , Gas Chromatography-Mass Spectrometry , Humans , Lymphocytes/physiology , Micronucleus Tests , Mutagens/chemistry , Oils, Volatile/chemistry , Oils, Volatile/toxicity , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Polycyclic Sesquiterpenes/analysis , Sesquiterpenes, Germacrane/analysis
3.
J Physiol ; 597(15): 3905-3925, 2019 08.
Article in English | MEDLINE | ID: mdl-31210356

ABSTRACT

KEY POINTS: Cancer growth, cell proliferation and cachexia index can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins in adolescence. Walker 256 tumour-bearing rats who started exercise training during adolescence did not revert the basal low glycaemia and insulinaemia observed before tumour cell inoculation. The moderate exercise training improved glucose tolerance and peripheral insulin sensitivity only in rats exercised early in adolescence. The chronic effects of our exercise protocol are be beneficial to prevent cancer cachexia and hold clear potential as a nonpharmacological therapy of insulin sensitization. ABSTRACT: We tested the hypothesis that moderate exercise training, performed early, starting during adolescence or later in life during adulthood, can inhibit tumour cell growth as a result of changes in biometric and metabolic markers. Male rats that were 30 and 70 days old performed a treadmill running protocol over 8 weeks for 3 days week-1 , 44 min day-1 and at 55-65% V̇O2max . After the end of training, a batch of rats was inoculated with Walker 256 carcinoma cells. At 15 days after carcinoma cell inoculation, the tumour was weighed and certain metabolic parameters were evaluated. The data demonstrated that physical performance was better in rats that started exercise training during adolescence according to the final workload and V̇O2max . Early or later moderate exercise training decreased the cachexia index, cell proliferation and tumour growth; however, the effects were more pronounced in rats that exercised during adolescence. Low glycaemia, insulinaemia and tissue insulin sensitivity was not reverted in Walker 256 tumour-bearing rats who trained during adolescence. Cancer growth can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins during adolescence. In addition, improvement in glucose-insulin homeostasis might be involved in this process.


Subject(s)
Carcinoma 256, Walker/therapy , Physical Conditioning, Animal/methods , Animals , Cachexia/metabolism , Cachexia/prevention & control , Carcinoma 256, Walker/pathology , Carcinoma 256, Walker/prevention & control , Cells, Cultured , Glucose/metabolism , Insulin Resistance , Male , Rats , Rats, Wistar
4.
J Dev Orig Health Dis ; 10(6): 608-615, 2019 12.
Article in English | MEDLINE | ID: mdl-31130151

ABSTRACT

Early-life chronic exposure to environmental contaminants, such as bisphenol-A, particulate matter air pollution, organophosphorus pesticides, and pharmaceutical drugs, among others, may affect central tissues, such as the hypothalamus, and peripheral tissues, such as the endocrine pancreas, causing inflammation and apoptosis with severe implications to the metabolism. The Developmental Origins of Health and Disease (DOHaD) concept articulates events in developmental phases of life, such as intrauterine, lactation, and adolescence, to later-life metabolism and health. These developmental phases are more susceptible to environmental changes, such as those caused by environmental contaminants, which may predispose individuals to obesity, metabolic syndrome, and chronic noncommunicable diseases later in life. Alterations in the epigenome are explored as an underlying mechanism to the programming effects on metabolism, as the expression of key genes related with central and peripheral metabolic functions may be altered in response to environmental disturbances. Studies show that environmental contaminants may affect gene expressions in mammals, especially when exposed to during the developmental phases of life, leading to metabolic disorders in adulthood. In this review, we discuss the current obesity epidemics, the DOHaD concept, pollutants' toxicology, environmental control, and the role of environmental contaminants in the central and peripheral programming of obesity and metabolic syndrome. Improving environmental monitoring may directly affect the quality of life of the population and help protect the future generations from metabolic diseases.


Subject(s)
Environmental Exposure/adverse effects , Environmental Monitoring/methods , Metabolic Diseases/diagnosis , Metabolic Diseases/etiology , Obesity/complications , Prenatal Exposure Delayed Effects/diagnosis , Prenatal Exposure Delayed Effects/etiology , Animals , Female , Humans , Pregnancy
5.
Drug Chem Toxicol ; 42(4): 394-402, 2019 Jul.
Article in English | MEDLINE | ID: mdl-29681187

ABSTRACT

Bendamustine, an anticancer drug with alkylating properties, is widely used to treat hematological malignancies. Since the nitrogen mustard family alkylators induce DNA damages and have been associated with an elevated risk of second malignancy, current study evaluates the cytotoxic, mutagenic, and recombinogenic effects of bendamustine by using, respectively the mitotic index assay, the in vitro mammalian cell micronucleus test (Mnvit) and the chromosome aberration (CA) test in human peripheral lymphocytes, and the in vivo homozygotization assay in Aspergillus nidulans, which detects the loss of heterozygosity (LOH) due to somatic recombination. Bendamustine (6.0 µg/ml, 9.0 µg/ml, and 12.0 µg/ml) induced a statistically significant concentration-related increase in the frequencies of micronuclei and a significant reduction in the cytokinesis block proliferation index (CBPI) rates when compared to negative control. In the CA test, bendamustine significantly increased the frequencies of structural aberrations at the three tested concentrations when compared to the negative control. Aspergillus nidulans diploids, obtained after bendamustine treatment (6.0 µg/ml, 12.0 µg/ml, and 24.0 µg/ml), produced, after haploidization, homozygotization index (HI) rates higher than 2.0 and significantly different from the negative control. Since bendamustine showed genotoxic effects in all tested concentrations, two of them corresponding to the peak plasma concentrations observed in cancer patients treated with bendamustine, data provided in the current research work may be useful to identify the most appropriate dosage regimen to achieve the efficacy and safety of this anticancer medication.


Subject(s)
Antineoplastic Agents, Alkylating/toxicity , Aspergillus nidulans/drug effects , Bendamustine Hydrochloride/toxicity , Chromosome Aberrations/chemically induced , Loss of Heterozygosity/drug effects , Lymphocytes/drug effects , Adolescent , Adult , Aspergillus nidulans/genetics , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Lymphocytes/pathology , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Young Adult
6.
Mutagenesis ; 31(4): 417-24, 2016 07.
Article in English | MEDLINE | ID: mdl-26825076

ABSTRACT

Pioglitazone (PTZ) is an oral antidiabetic agent whose anti-cancer properties have been described recently. Since PTZ increases the production of reactive oxygen species in mammalian cells, the aim of current study was to evaluate the cytotoxic, mutagenic and recombinogenic effects of PTZ using respectively the in vitro mitotic index assay and the in vitro mammalian cell micronucleus test in human peripheral lymphocytes, and the in vivo homozygotization assay in Aspergillus nidulans, which detects the loss of heterozygosity due to somatic recombination. Although the lowest PTZ concentrations (4-36 µM) did not show any significant rise in the micronucleus production, the higher PTZ concentration (108 µM) produced a statistically higher number of micronuclei than the negative control and significantly altered the cell-proliferation kinetics, demonstrating the mutagenic and antiproliferative effects of PTZ, respectively. The recombinogenic activity of PTZ, demonstrated here for the first time, was observed at the highest tested concentration (400 µM) through the homozygotization index rates significantly different from the negative control. Taken together, our results show that PTZ is genotoxic at a concentration higher than the therapeutic plasma concentration. This PTZ genotoxicity may be a potential benefit to its previously described antitumour activity.


Subject(s)
DNA Damage , Lymphocytes/drug effects , Micronuclei, Chromosome-Defective/chemically induced , PPAR gamma/agonists , Thiazolidinediones/adverse effects , Aspergillus nidulans/drug effects , Aspergillus nidulans/genetics , Cells, Cultured , DNA/drug effects , Humans , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/toxicity , Loss of Heterozygosity , Mutagenicity Tests , Oxidative Stress/drug effects , Pioglitazone , Thiazolidinediones/therapeutic use , Thiazolidinediones/toxicity
7.
PLoS One ; 10(3): e0120675, 2015.
Article in English | MEDLINE | ID: mdl-25803314

ABSTRACT

Glibenclamide is an oral hypoglycemic drug commonly prescribed for the treatment of type 2 diabetes mellitus, whose anti-tumor activity has been recently described in several human cancer cells. The mutagenic potential of such an antidiabetic drug and its recombinogenic activity in eukaryotic cells were evaluated, the latter for the first time. The mutagenic potential of glibenclamide in therapeutically plasma (0.6 µM) and higher concentrations (10 µM, 100 µM, 240 µM and 480 µM) was assessed by the in vitro mammalian cell micronucleus test in human lymphocytes. Since the loss of heterozygosity arising from allelic recombination is an important biologically significant consequence of oxidative damage, the glibenclamide recombinogenic activity at 1 µM, 10 µM and 100 µM concentrations was evaluated by the in vivo homozygotization assay. Glibenclamide failed to alter the frequency of micronuclei between 0.6 µM and 480 µM concentrations and the cytokinesis block proliferation index between 0.6 µM and 240 µM concentrations. On the other hand, glibenclamide changed the cell-proliferation kinetics when used at 480 µM. In the homozygotization assay, the homozygotization indices for the analyzed markers were lower than 2.0 and demonstrated the lack of recombinogenic activity of glibenclamide. Data in the current study demonstrate that glibenclamide, in current experimental conditions, is devoid of significant genotoxic effects. This fact encourages further investigations on the use of this antidiabetic agent as a chemotherapeutic drug.


Subject(s)
Glyburide/toxicity , Hypoglycemic Agents/toxicity , Lymphocytes/drug effects , Mutagens/toxicity , Adult , Cell Proliferation/drug effects , Cells, Cultured , Diabetes Mellitus, Type 2/drug therapy , Humans , Lymphocytes/cytology , Lymphocytes/metabolism , Micronucleus Tests , Young Adult
8.
Drug Chem Toxicol ; 38(3): 306-11, 2015.
Article in English | MEDLINE | ID: mdl-25231917

ABSTRACT

Terbinafine is an antimycotic drug usually used against several superficial fungal infections and with a potential application in the treatment of human cancers. Since to date there are few data on the genotoxic effects of terbinafine in mammalian cells, current study evaluated the potential genotoxic of such antifungal agent in cultured human peripheral blood lymphocytes. Terbinafine was used at the peak plasma concentration (1.0 µg/ml) and in four additional concentrations higher than the human plasmatic peak (5.0 µg/ml, 25.0 µg/ml, 50.0 µg/ml and 100.0 µg/ml). Chromosomal aberrations (CA), sister chromatid exchanges (SCE), micronuclei (MN), nucleoplasmic bridges (NP) and nuclear buds (NB) were scored as genetic endpoints. In all analysis no significant differences (α = 0.05, Kruskal-Wallis test) were observed. Complementary criterion adopted to obtain the final response in cytogenetic agreed with statistical results. Therefore, results of this study showed that terbinafine neither induced CA, SCE, MN, NP and NB nor affected significantly mitotic, replication and cytokinesis-block proliferation indices in any of the tested concentrations. It may be assumed that terbinafine was not genotoxic or cytotoxic to cultured human peripheral blood lymphocytes in our experimental conditions.


Subject(s)
Antifungal Agents/toxicity , Lymphocytes/drug effects , Naphthalenes/toxicity , Adult , Cell Proliferation/drug effects , Cells, Cultured , Cytokinesis/drug effects , Female , Humans , Lymphocytes/pathology , Male , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Mitosis/drug effects , Risk Assessment , Sister Chromatid Exchange/drug effects , Terbinafine , Young Adult
9.
Cell Physiol Biochem ; 34(6): 1920-32, 2014.
Article in English | MEDLINE | ID: mdl-25500480

ABSTRACT

BACKGROUND/AIMS: The objective of the current work was to test the effect of metformin on the tumor growth in rats with metabolic syndrome. METHODS: We obtained pre-diabetic hyperinsulinemic rats by neonatal treatment with monosodium L-glutamate (MSG), which were chronically treated every day, from weaning to 100 day old, with dose of metformin (250 mg/kg body weight). After the end of metformin treatment, the control and MSG rats, treated or untreated with metformin, were grafted with Walker 256 carcinoma cells. Tumor weight was evaluated 14 days after cancer cell inoculation. The blood insulin, glucose levels and glucose-induced insulin secretion were evaluated. RESULTS: Chronic metformin treatment improved the glycemic homeostasis in pre-diabetic MSG-rats, glucose intolerance, tissue insulin resistance, hyperinsulinemia and decreased the fat tissue accretion. Meanwhile, the metformin treatment did not interfere with the glucose insulinotropic effect on isolated pancreatic islets. Chronic treatment with metformin was able to decrease the Walker 256 tumor weight by 37% in control and MSG rats. The data demonstrated that the anticancer effect of metformin is not related to its role in correcting metabolism imbalances, such as hyperinsulinemia. However, in morphological assay to apoptosis, metformin treatment increased programmed cell death. CONCLUSION: Metformin may have a direct effect on cancer growth, and it may programs the rat organism to attenuate the growth of Walker 256 carcinoma.


Subject(s)
Carcinoma 256, Walker/drug therapy , Cell Proliferation/drug effects , Diabetes Mellitus, Experimental/drug therapy , Metformin/administration & dosage , Neoplasms/drug therapy , Animals , Blood Glucose , Carcinoma 256, Walker/metabolism , Carcinoma 256, Walker/pathology , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Glucose Intolerance/drug therapy , Glucose Intolerance/pathology , Hypoglycemic Agents/administration & dosage , Insulin/metabolism , Insulin Resistance/genetics , Islets of Langerhans/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Rats , Sodium Glutamate/toxicity
10.
Acta sci., Health sci ; 34(ed. esp): 321-327, jan.-dez. 2012. ilus
Article in English | LILACS | ID: biblio-1513

ABSTRACT

The genotoxicity of benznidazole at a concentration of 75 µM, used in the treatment of Chagas' disease, has been recently reported. The present study evaluated the inhibitory effect of benznidazole on the growth of epimastigote forms of T. cruzi I and II by using genotoxic (75 µM) and non-genotoxic (50 µM) concentrations. To assess the growth rates of T. cruzi strains G2, A2.1A, CL, Y, and 2052, parasites in the epimastigote form were cultured in LIT medium for 192 h at 28ºC, with (50 and 75 µM) and without (negative control) benznidazole. Benznidazole at both concentrations inhibited all the strains, regardless of genetic group. In the 75 µM concentration, there was a significant decrease in the number of parasites inoculated at T0 after 96 h incubation. The results showed that although genotoxic and non-genotoxic doses of benznidazole inhibit the growth of the epimastigote forms of T. cruzi I and II, only the 75 µM dose seem to indicate a possible trypanocidal effect.


O benzonidazol é um medicamento utilizado no tratamento da doença de Chagas, cuja genotoxicidade foi recentemente observada em concentrações a partir de 75 µM. O efeito inibitório do benzonidazol sobre o crescimento de formas epimastigotas de T. cruzi I e II foi avaliado no presente trabalho, utilizando-se concentrações genotóxica (75 µM) e não genotóxica (50 µM) deste medicamento. Para avaliação da taxa de crescimento das cepas G2, A2.1A, CL, Y e 2052, os parasitos na forma epimastigota foram cultivados em meio LIT, durante 192 horas, à 28 o C, tanto em presença de benzonidazol (50 e 75 µM), quanto em sua ausência (controle negativo). O efeito inibitório do benzonidazol, em ambas concentrações, foi observado para todas as cepas analisadas, independentemente do grupo genético a que pertençam. Na concentração de 75 µM, observou-se após 96 horas de incubação, redução significativa do número de parasitos inoculados no tempo zero (T0). Os resultados demonstraram que tanto a dose genotóxica quanto a não genotóxica do benzonidazol inibiram o crescimento de formas epimastigotas de T. cruzi I e II, porém somente a dose de 75 µM pode indicar um possível efeito tripanocida.


Subject(s)
Trypanosoma cruzi , Chagas Disease , Genotoxicity
11.
Phytopathology ; 101(8): 923-8, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21425929

ABSTRACT

Heterokaryosis is an important mechanism which provides genetic variability increase in filamentous fungi. In order to assess the diversity of vegetative compatibility reactions existing among Colletotrichum acutatum isolates derived from different hosts, complementary nit mutants of each isolate were obtained and paired in all possible combinations. Vegetative compatibility groups (VCG) were identified among the isolates according to their ability to form viable heterokaryons. Seven VCGs were identified among the isolates, one of which contained isolates from different hosts. VCGs 2 and 6 contained two and three members, respectively; VCG-3 contained four members, and four VCGs (1, 4, 5, and 7) contained a single one. This study shows, for the first time, the isolation and the parasexual segregation of a heterozygous diploid sector derived from the heterokaryon formed with nit mutants from VCG-6. Diploid, named DE-3, showed nit+ phenotype and growth rate similar to the parental wild isolate. When inoculated in the presence of the haploidizing agent benomyl, the diploid strain produced parasexual haploid segregants exhibiting the nit phenotypes of the crossed mutants. Since viable heterokaryons and diploid may be formed among vegetative compatible isolates of C. acutatum, this study suggests that the parasexual cycle may be an alternative source of genetic variability in C. acutatum isolates.


Subject(s)
Colletotrichum/classification , Plant Diseases/microbiology , Plants/classification , Plants/microbiology , Colletotrichum/genetics , Colletotrichum/physiology , DNA, Fungal/genetics , Diploidy , Mutation , Polymerase Chain Reaction , Species Specificity
12.
Phytother Res ; 23(2): 231-5, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18803228

ABSTRACT

The essential oil of Achillea millefolium is commonly used in folk medicine for the treatment of several diseases and has been demonstrated previously to exert an in vitro antimicrobial activity against human pathogens. Current study investigates the genotoxic activity of A. millefolium oil. The oil's major constituents are: chamazulene (42.15%), sabinene (19.72%), terpin-4-ol (5.22%), beta-caryophyllene (4.44%) and eucalyptol (3.10%), comprising 74.63% of the total. The oil's genotoxic evaluation was performed at concentrations of 0.13 microL/mL, 0.19 microL/mL and 0.25 microL/mL with a heterozygous diploid strain of Aspergillus nidulans, named A757//UT448, with green conidia. A statistically significant increasing number of yellow and white mitotic recombinants, per colony, of the diploid strain was reported after oil treatment with 0.19 microL/mL and 0.25 microL/mL concentrations. The genotoxicity of the oil was associated with the induction of mitotic non-disjunction or crossing-over by oil.


Subject(s)
Achillea/chemistry , Aspergillus nidulans/drug effects , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Aspergillus nidulans/genetics , Crossing Over, Genetic/drug effects , Gas Chromatography-Mass Spectrometry , Medicine, Traditional , Mutagenicity Tests , Nondisjunction, Genetic/drug effects
13.
Ciênc. rural ; 37(6): 1813-1816, nov.-dez. 2007. ilus
Article in English | LILACS | ID: lil-464921

ABSTRACT

Fusarium graminearum isolates causing Fusarium head blight in wheat were collected in Brazil and analyzed by random amplified polymorphic DNA (RAPD) markers and vegetative compatibility grouping (VCG). Nitrate non-utilizing mutants (nit) from each isolate were paired to verify heterokaryon formation. Three VCGs were identified among F. graminearum isolates: VCG1 included F-2, F-3 and F-4 isolates; VCG2 included F-1, F-6 and F-9 isolates; VCG3 included F-5, F-7 and F-8 isolates. Based on PCR amplification with eight different primers, the isolates showed great genetic similarity among themselves. Dendrogram analysis demonstrated two RAPD groups: Group A, consisting of isolates F-2 and F-9, and Group B, composed of the remaining isolates. Results suggest the clonal origin of F. graminearum isolates.


Isolados de Fusarium graminearum, obtidos de espigas de trigo com sintomas de Giberela, foram analisados pela técnica do Polimorfismo de DNA Amplificado ao Acaso (RAPD) e pelos Grupos de Compatibilidade Vegetativa (GCV). Mutantes auxotróficos (nit) de cada isolado foram pareados em todas as combinações possíveis, para a formação de heterocários. Três GCVs foram identificados: GCV1, incluindo os isolados F-2, F-3 e F-4; GCV2, incluindo os isolados F-1, F-6 e F-9; e GCV3, formado pelos isolados F-5, F-7 e F-8. Dois grupos foram identificados com base nos marcadores de RAPD: o grupo A, formado pelos isolados F-2 e F-9, e o grupo B, composto pelos demais isolados, os quais apresentaram grande similaridade entre si. Os resultados sugerem a origem clonal dos isolados de F. graminearum analisados.

14.
Ciênc. rural ; 37(5): 1235-1240, set.-out. 2007. tab
Article in Portuguese | LILACS | ID: lil-458347

ABSTRACT

No presente estudo avaliou-se o efeito fungitóxico do detergente derivado do óleo da mamona (Ricinus communis) sobre o desenvolvimento dos fitopatógenos: Pyricularia grisea, Fusarium graminearum e Colletotrichum lindemuthianum. Seis concentrações do detergente (12,5mL L-1 a 300mL L-1) foram, individualmente, incorporadas ao Meio Basal; a seguir, após inoculação fúngica, o crescimento radial dos micélios foi avaliado. A inibição total do desenvolvimento de C. lindemuthianum e P. grisea foi observada entre as concentrações de 50mL L-1 e 200mL L-1, respectivamente. Com base no crescimento miceliano das colônias de F. graminearum, a atividade antifúngica do detergente do óleo da mamona (DOM) determinou inibição variável entre 79,4 e 91 por cento para a raça F2 e entre 80,7 e 90,7 por cento para a raça F4. O detergente, nas concentrações de 100 a 300mL L-1, inibiu em 100 por cento a germinação de conídios de F. graminearum (raças F-4 e F-2). Os resultados demonstram nítida atividade antifúngica do detergente derivado do óleo da mamona sobre fitopatógenos.


In the present study the fungitoxic effect of the castor oil plant detergent (Ricinus communis) on the development of the phytopathogens Pyricularia grisea, Fusarium graminearum and Colletotrichum lindemuthianum was evaluated. Six concentrations of the detergent (12.5mL L-1 to 300mL L-1) had been, individually, incorporated to the Basal Medium. After fungi inoculations, the radial growth of mycelia were evaluated. Detergent at 50mL L-1 and 200mL L-1 inhibited completely the development of P. grisea and C. lindemuthianum, respectively. On the basis of the mycelial growth of F. graminearum, the fungitoxic activity of the castor oil plant detergent (DOM) determined inhibition in the range of 79.4 and 91 percent for the F2 race and 80.7 and 90.7 percent for the F4 race. Detergent at the concentrations of 100mL L-1 to 300mL L-1 inhibited in 100 percent the F. graminearum germination conidia (races F-4 and F-2). Results demonstrate the fungitoxic activity of the castor oil plant detergent on phytopathogenic fungi.

15.
Braz. j. microbiol ; 38(3): 430-434, July-Sept. 2007. ilus, graf, tab
Article in English | LILACS | ID: lil-464766

ABSTRACT

Sulindac sulfide is a non-steroidal anti-inflammatory drug (NSAID) with chemopreventive effect on human cancer cells. Due to the involvement of the somatic recombination in the carcinogenic process, sulindac sulfide's recombinogenic potential was evaluated by the Homozygotization Index (HI) in the filamentous fungus Aspergillus nidulans. The drug's recombinogenic potential was evaluated by its capacity to induce homozygosis of recessive genes from heterozygous diploid cells. Sulindac sulfide at 175 and 350 æM concentrations induced mitotic recombination in A. nidulans diploid cells, with HI values for genetic markers higher than 2.0, and significantly different from control HI values. The recombinogenic effect of NSAID was related to the induction of DNA strand breaks and cell cycle alterations. Sulindac sulfide's carcinogenic potential was also discussed.


Sulfeto de sulindaco é um antiinflamatório não-esteroidal com efeitos quimiopreventivos em cânceres humanos. O presente estudo teve como objetivo avaliar o potencial recombinagênico do sulfeto de sulindaco em células diplóides de Aspergillus nidulans. O efeito recombinagênico da droga foi demonstrado através da homozigotização de genes recessivos, previamente presentes em heterozigose. Os valores de HI (índice de Homozigotização) para diferentes marcadores genéticos apresentaram-se maiores do que 2,0 e significativamente diferentes dos valores obtidos em sulfeto de sulindaco ausência da droga (controle). O potencial recombinagênico do sulfeto de sulindaco foi associado à indução de quebras na molécula do DNA e a alterações no ciclo celular. O potencial carcinogênico do sulfeto de sulindaco foi discutido no presente trabalho.


Subject(s)
Humans , Anti-Inflammatory Agents , Aspergillus nidulans , Homozygote , In Vitro Techniques , Recombination, Genetic , Sulfides , Sulindac , Genetic Markers , Methods , Sampling Studies
16.
Rev Iberoam Micol ; 24(2): 167-70, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17604441

ABSTRACT

Isolates of Pyricularia grisea from wheat (Triticum aestivum Lam.) and triticale (x Triticosecale Wittmack) spikes with blast symptoms were analyzed by classical (VCG) and molecular (RAPD) techniques. P. grisea mutants, unable to use sodium nitrate (nit) as nitrogen source, were obtained with potassium chlorate. For vegetative compatibility (VCG) tests, genetically complementary nit mutant pairs were inoculated in a medium with sodium nitrate as a single nitrogen source. P. grisea isolates were divided into two vegetative compatibility groups and two RAPD groups. Since vegetative compatible strains may mutually exchange genetic and cytoplasmatic material, the contribution of the parasexual cycle in the genetic variability of Brazilian P. grisea isolates is discussed.


Subject(s)
DNA, Fungal/genetics , Edible Grain/microbiology , Magnaporthe/isolation & purification , Triticum/microbiology , Brazil , Fungal Proteins/genetics , Fungal Proteins/physiology , Genes, Fungal , Genetic Complementation Test , Genetic Variation , Magnaporthe/genetics , Magnaporthe/metabolism , Magnaporthe/physiology , Nitrates/metabolism , Nitrogen/metabolism , Plant Diseases/microbiology , Random Amplified Polymorphic DNA Technique , Recombination, Genetic
18.
Genet. mol. biol ; 28(4): 798-803, Dec. 2005. ilus, tab, graf
Article in English | LILACS | ID: lil-450995

ABSTRACT

The exogenous nitric oxide donor, sodium nitroprusside, evaluated the recombinogenic potential of nitric oxide. Drug inhibited mycelial growth and conidiation in A757 Aspergillus nidulans master strain. Two heterozygous diploid strains, one wild (uvsH+//uvsH+) and the other defective to DNA repair (uvsH//uvsH) were used for recombinagenesis tests. Sodium nitroprusside recombinogenic effect was evaluated by the induction of homozygosis of recessive genes, originally present in heterozygous condition. Results show that sodium nitroprusside (40 uM, 80 uM and 160 uM) is effective in inducing mitotic crossing-over in diploid cells of A. nidulans


Subject(s)
Aspergillus nidulans/genetics , Nitric Oxide/toxicity , Fungi/genetics , Genotype , Mitosis
19.
Biol Res ; 35(3-4): 441-6, 2002.
Article in English | MEDLINE | ID: mdl-12462996

ABSTRACT

The participation of the recently described uvsZ1 mutation in checkpoint control and the identification of epistatic relations between uvsZ1 mutation and uvsD153 and uvsJ1 mutations are provided. The effect of mutation uvsZ1 in mitotic exchanges into paba-bi (chromosome I) and cho-nic (chromosome VII) genetic intervals has also been evaluated. The mutation uvsZ1 was epistatic with regard to uvsD153 and uvsJ1 mutations, with no involvement with checkpoint control. In contrast to mutations in UvsB and UvsF groups, the uvsZ1 mutation failed to cause any changes in the frequencies of mitotic crossing-over. The distinct phenotypic traits given by mutation uvsZ1 suggest the presence of complex interactions among the different DNA repair pathways. Interaction may be an additional cell strategy of DNA damage response.


Subject(s)
Aspergillus nidulans/genetics , Epistasis, Genetic , Mutation/genetics , Crossing Over, Genetic , DNA Damage/genetics , DNA Repair/genetics , DNA, Fungal/genetics , Genes, Fungal , Radiation Tolerance/genetics , Ultraviolet Rays
20.
Braz. j. microbiol ; 33(3): 255-259, July-Sept. 2002. ilus, tab
Article in English | LILACS | ID: lil-349779

ABSTRACT

Doxorubicin and etoposide are intercalating agents that inhibit the action of the enzyme topoisomerase II. Both drugs present therapeutic activity in numerous human neoplasms In the present work the recombinagenic potential of these drugs was evaluated by ascomycete Aspergillus nidulans. Their effects on the asexual cycle of A. nidulans was also appraised. Two heterozygous diploid strains of A. nidulans, a wild (uvsH+//uvsH+) and a defective to the DNA repair (uvsH//uvsH) were used. The drugs' recombinagenic potential was evaluated by their capacity to induce homozygosis of recessive genes from heterozygous cells. Both drugs have a recombinagenic effect on diploid cells of A. nidulans. Doxorubicin and etoposide are potentially capable to induce secondary malignancies, mediated by the mitotic crossing-over in eukaryotic cells


Subject(s)
Aspergillus nidulans , Clinical Enzyme Tests , Doxorubicin , Excitatory Amino Acid Agents , Etoposide/analysis , In Vitro Techniques , Recombination, Genetic , Diploidy , Heterozygote
SELECTION OF CITATIONS
SEARCH DETAIL
...