Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2151: 211-218, 2020.
Article in English | MEDLINE | ID: mdl-32452007

ABSTRACT

Protein structure determination by X-ray crystallography guides structure-function and rational drug design studies. Helminths cause devastating diseases, including schistosomiasis that affects over one-third of the human population. Trematodes from the genus Schistosoma heavily depend on glycolysis; thus enzymes involved in this metabolic pathway are potential drug targets. Here we present a protocol to obtain crystal structures of recombinantly expressed triosephosphate isomerase from S. mansoni (SmTPI) that diffracted in house to a resolution of 2 Å.


Subject(s)
Crystallography, X-Ray/methods , Schistosoma mansoni/enzymology , Triose-Phosphate Isomerase/chemistry , Amino Acid Sequence , Animals , Base Sequence , Crystallization , Gene Expression , Genetic Vectors/metabolism , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/isolation & purification
2.
PLoS Negl Trop Dis ; 14(1): e0007815, 2020 01.
Article in English | MEDLINE | ID: mdl-31923219

ABSTRACT

Triosephosphate isomerases (TPIs) from Taenia solium (TsTPI) and Schistosoma mansoni (SmTPI) are potential vaccine and drug targets against cysticercosis and schistosomiasis, respectively. This is due to the dependence of parasitic helminths on glycolysis and because those proteins elicit an immune response, presumably due to their surface localization. Here we report the crystal structures of TsTPI and SmTPI in complex with 2-phosphoglyceric acid (2-PGA). Both TPIs fold into a dimeric (ß-α)8 barrel in which the dimer interface consists of α-helices 2, 3, and 4, and swapping of loop 3. TPIs from parasitic helminths harbor a region of three amino acids knows as the SXD/E insert (S155 to E157 and S157 to D159 in TsTPI and SmTPI, respectively). This insert is located between α5 and ß6 and is proposed to be the main TPI epitope. This region is part of a solvent-exposed 310-helix that folds into a hook-like structure. The crystal structures of TsTPI and SmTPI predicted conformational epitopes that could be used for vaccine design. Surprisingly, the epitopes corresponding to the SXD/E inserts are not the ones with the greatest immunological potential. SmTPI, but not TsTPI, habors a sole solvent exposed cysteine (SmTPI-S230) and alterations in this residue decrease catalysis. The latter suggests that thiol-conjugating agents could be used to target SmTPI. In sum, the crystal structures of SmTPI and TsTPI are a blueprint for targeted schistosomiasis and cysticercosis drug and vaccine development.


Subject(s)
Schistosoma mansoni/enzymology , Taenia solium/enzymology , Triose-Phosphate Isomerase/chemistry , Amino Acid Sequence , Animals , Crystallography, X-Ray , Drug Design , Epitopes/chemistry , Helminth Proteins/chemistry , Vaccines
3.
Plant J ; 99(5): 950-964, 2019 09.
Article in English | MEDLINE | ID: mdl-31034710

ABSTRACT

Reactive oxidative species (ROS) and S-glutathionylation modulate the activity of plant cytosolic triosephosphate isomerases (cTPI). Arabidopsis thaliana cTPI (AtcTPI) is subject of redox regulation at two reactive cysteines that function as thiol switches. Here we investigate the role of these residues, AtcTPI-Cys13 and At-Cys218, by substituting them with aspartic acid that mimics the irreversible oxidation of cysteine to sulfinic acid and with amino acids that mimic thiol conjugation. Crystallographic studies show that mimicking AtcTPI-Cys13 oxidation promotes the formation of inactive monomers by reposition residue Phe75 of the neighboring subunit, into a conformation that destabilizes the dimer interface. Mutations in residue AtcTPI-Cys218 to Asp, Lys, or Tyr generate TPI variants with a decreased enzymatic activity by creating structural modifications in two loops (loop 7 and loop 6) whose integrity is necessary to assemble the active site. In contrast with mutations in residue AtcTPI-Cys13, mutations in AtcTPI-Cys218 do not alter the dimeric nature of AtcTPI. Therefore, modifications of residues AtcTPI-Cys13 and AtcTPI-Cys218 modulate AtcTPI activity by inducing the formation of inactive monomers and by altering the active site of the dimeric enzyme, respectively. The identity of residue AtcTPI-Cys218 is conserved in the majority of plant cytosolic TPIs, this conservation and its solvent-exposed localization make it the most probable target for TPI regulation upon oxidative damage by reactive oxygen species. Our data reveal the structural mechanisms by which S-glutathionylation protects AtcTPI from irreversible chemical modifications and re-routes carbon metabolism to the pentose phosphate pathway to decrease oxidative stress.


Subject(s)
Arabidopsis/enzymology , Cytosol/enzymology , Cytosol/metabolism , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/metabolism , Amino Acid Sequence , Arabidopsis/metabolism , Catalytic Domain , Crystallography, X-Ray , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Oxidation-Reduction , Protein Conformation , Reactive Oxygen Species , Triose-Phosphate Isomerase/genetics
4.
Front Mol Biosci ; 5: 103, 2018.
Article in English | MEDLINE | ID: mdl-30538993

ABSTRACT

In plants, the ancestral cyanobacterial triosephosphate isomerase (TPI) was replaced by a duplicated version of the cytosolic TPI. This isoform acquired a transit peptide for chloroplast localization and functions in the Calvin-Benson cycle. To gain insight into the reasons for this gene replacement in plants, we characterized the TPI from the photosynthetic bacteria Synechocystis (SyTPI). SyTPI presents typical TPI enzyme kinetics profiles and assembles as a homodimer composed of two subunits that arrange in a (ß-α)8 fold. We found that oxidizing agents diamide (DA) and H2O2, as well as thiol-conjugating agents such as oxidized glutathione (GSSG) and methyl methanethiosulfonate (MMTS), do not inhibit the catalytic activity of SyTPI at concentrations required to inactivate plastidic and cytosolic TPIs from the plant model Arabidopsis thaliana (AtpdTPI and AtcTPI, respectively). The crystal structure of SyTPI revealed that each monomer contains three cysteines, C47, C127, and C176; however only the thiol group of C176 is solvent exposed. While AtcTPI and AtpdTPI are redox-regulated by chemical modifications of their accessible and reactive cysteines, we found that C176 of SyTPI is not sensitive to redox modification in vitro. Our data let us postulate that SyTPI was replaced by a eukaryotic TPI, because the latter contains redox-sensitive cysteines that may be subject to post-translational modifications required for modulating TPI's enzymatic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...