Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38202435

ABSTRACT

The scarcity of water resources affects tomato production. Deficit irrigation may optimize water management with only a low reduction in yield. Deficit irrigation scheduling based on applied water presented no clear conclusions. Water stress management based on plant water status, such as water potential, could improve the scheduling. The aim of this work was to evaluate the physiological and yield responses of different tomato cultivars to deficit irrigation. Three experiments were carried out in 2020 and 2022 at the University of Seville (Spain). "Cherry" and "chocolate Marmande" cultivars with an indeterminate growth pattern were grown in a greenhouse. Treatments were: Control (full irrigated) and Deficit. Deficit plants were irrigated based on water potential measurements. Moderate water stress did not significantly reduce the yield, although it affected other processes. Fruit size and total soluble solids were the most sensitive parameters to water stress. The latter increased only when persistent water stress was applied. However, truss development and fruit number were not affected by the level of water stress imposed. Such results suggest that moderate water stress, even in sensitive phenological stages such as flowering, would not reduce yield. Deficit irrigation scheduling based on plant water status will allow accurate management of water stress.

2.
Funct Plant Biol ; 51(1): NULL, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37072870

ABSTRACT

Different soybean cultivars (Williams 82 , Union , Jindou 21 , Long Huang 1 , Long Huang 2 ) were exposed to drying soil, to investigate whether endogenous abscisic acid (ABA) concentrations and leaf water relations regulated stomatal behaviour. We measured ABA concentrations in xylem and tissue of the first and second trifoliate leaves respectively; stomatal conductance (gs ) and leaf water potential (Ψleaf ) in both leaves; and water content in soil. Cultivar variation in leaf area and g s caused different rates of soil drying, but g s and Ψ leaf declined similarly with soil drying in all cultivars. Variation in leaf xylem ABA concentration better explained stomatal responses than foliar ABA concentration in some cultivars, and was highly correlated with stomatal conductance. Xylem ABA concentration in well-watered soil was highest in Union , and in drying soil was lowest in Jindou 21 and Long Huang 2 , although the latter had the highest foliar ABA concentrations. Jindou 21 accumulated lower xylem ABA concentrations than other cultivars as soil moisture or Ψ leaf decreased, but its stomatal sensitivity to xylem ABA was greater. Because cultivars varied in both ABA accumulation and stomatal sensitivity to ABA, but had similar stomatal sensitivity to Ψ leaf , leaf water relations seem more important in regulating stomatal closure of soybean.


Subject(s)
Abscisic Acid , Glycine max , Abscisic Acid/pharmacology , Soil , Water/physiology , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...