Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 105(1-2): 196-200, 2006 Apr 21.
Article in English | MEDLINE | ID: mdl-16298503

ABSTRACT

Momordica charantia and Andrographis paniculata are the commonly used herbs by the diabetic patients in Pampanga, Philippines. While the anti-diabetic potential of Momordica charantia is well established in streptozocin- or alloxan-induced diabetic animals, the anti-diabetic potential of Andrographis paniculata in alloxan-induced diabetic rat is not known. Neither the effects of these herbs on estrous cyclicity of alloxan-induced diabetic rats are elucidated. Thus, in these experiments, Momordica charantia fruit juice or Andrographis paniculata decoction was orally administered to alloxan-induced diabetic rats. Rats that were treated with Momordica charantia and Andrographis paniculata had higher body weight (BW) compared with diabetic positive control (P < 0.01) from day 22 to day 27 (D27) but exhibited lower BW than the non-diabetic control (P < 0.05). These rats had lower feed (P < 0.05) and liquid intakes (P < 0.01) compared with diabetic positive control from day 17 to D27, but similar with the non-diabetic control. The blood glucose levels in these groups were significantly reduced from day 12 to D27 compared with diabetic positive control (P < 0.01), however, comparable with non-diabetic control. The diabetic positive control had extended mean estrous cycles (8 days) compared to Momordica charantia and Andrographis paniculata-treated diabetic rats (5 days; P < 0.05). Our results suggest that the anti-diabetic potentials of Momordica charantia and Andrographis paniculata could restore impaired estrous cycle in alloxan-induced diabetic rats.


Subject(s)
Andrographis/chemistry , Diabetes Mellitus, Experimental/drug therapy , Estrus/drug effects , Hypoglycemic Agents/therapeutic use , Momordica/chemistry , Plant Extracts/therapeutic use , Alloxan , Animals , Blood Glucose/analysis , Diabetes Mellitus, Experimental/physiopathology , Female , Glycosuria/urine , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley
2.
J Biol Chem ; 276(27): 24726-35, 2001 Jul 06.
Article in English | MEDLINE | ID: mdl-11333275

ABSTRACT

We have compared regulation of the serglycin gene in human erythroleukemia (HEL) and CHRF 288-11 cells, which have megakaryocytic characteristics, with promyelocytic HL-60 cells. Deletion constructs were prepared from the region -1123/+42 to -20/+42, and putative regulatory sites were mutated. In all three cell lines, the two major regulatory elements for constitutive expression were the (-80)ets site and the cyclic AMP response element (CRE) half-site at -70. A protein from HEL and CHRF, but not HL60, nuclear extracts bound to the (-80)ets site. Another protein from all three cell lines bound to the (-70)CRE. Phorbol 12-myristate 13-acetate (PMA) and dibutyryl cyclic AMP (dbcAMP) increased expression of the reporter in HEL cells 2.5-3- and 4.5-fold, respectively, from all constructs except those with (-70)CRE mutations. PMA virtually eliminated expression of serglycin mRNA and promoter constructs, but dbcAMP increased expression in HL-60 cells. The effects of PMA and dbcAMP on promoter expression correlated with mRNA expression. The strengths of two DNase I-hypersensitive sites in the 5'-flanking region and the first intron in all three cells correlated with relative endogenous serglycin mRNA expression. An additional DNase I-hypersensitive site in HL60 DNA in the first intron may be related to the high serglycin expression in HL60 relative to HEL or CHRF cells.


Subject(s)
Deoxyribonuclease I/metabolism , Gene Expression Regulation, Neoplastic , Leukemia, Erythroblastic, Acute/metabolism , Megakaryocytes/metabolism , Promoter Regions, Genetic , Proteoglycans/genetics , Bucladesine/pharmacology , HL-60 Cells , Helix-Loop-Helix Motifs , Humans , Introns , RNA, Messenger/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Vesicular Transport Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...