Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Adv Model Earth Syst ; 14(5): e2021MS002868, 2022 May.
Article in English | MEDLINE | ID: mdl-35865233

ABSTRACT

The Intergovernmental Panel on Climate Change Fifth Assessment Report lists sea-level rise as one of the major future climate challenges. Based on pre-industrial and historical-and-future climate simulations with the Community Earth System Model, we analyze the projected sea-level rise in the Northwest Atlantic Ocean with two sets of simulations at different horizontal resolutions. Compared with observations, the low resolution (LR) model simulated Gulf Stream does not separate from the shore but flows northward along the entire coast, causing large biases in regional dynamic sea level (DSL). The high resolution (HR) model improves the Gulf Stream representation and reduces biases in regional DSL. Under the RCP8.5 future climate scenario, LR projects a DSL trend of 1.5-2 mm/yr along the northeast continental shelf (north of 40° N), which is 2-3 times the trend projected by HR. Along the southeast shelf (south of 35° N), HR projects a DSL trend of 0.5-1 mm/yr while the DSL trend in LR is statistically insignificant. The different spatial patterns of DSL changes are attributable to the different Gulf Stream reductions in response to a weakening Atlantic Meridional Overturning Circulation. Due to its poor representation of the Gulf Stream, LR projects larger (smaller) current decreases along the north (south) east continental slope compared to HR. This leads to larger (smaller) trends of DSL rise along the north (south) east shelf in LR than in HR. The results of this study suggest that the better resolved ocean circulations in HR can have significant impacts on regional DSL simulations and projections.

2.
Glob Chang Biol ; 26(4): 2120-2133, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31883173

ABSTRACT

In light of rapid environmental change, quantifying the contribution of regional- and local-scale drivers of coral persistence is necessary to characterize fully the resilience of coral reef systems. To assess multiscale responses to thermal perturbation of corals in the Coral Triangle (CT), we developed a spatially explicit metacommunity model with coral-algal competition, including seasonal larval dispersal and external spatiotemporal forcing. We tested coral sensitivity in 2,083 reefs across the CT region and surrounding areas under potential future temperature regimes, with and without interannual climate variability, exploring a range of 0.5-2.0°C overall increase in temperature in the system by 2054. We found that among future projections, reef survival probability and mean percent coral cover over time were largely determined by the presence or absence of interannual sea surface temperature (SST) extremes as well as absolute temperature increase. Overall, reefs that experienced SST time series that were filtered to remove interannual variability had approximately double the chance of survival than reefs subjected to unfiltered SST. By the end of the forecast period, the inclusion of thermal anomalies was equivalent to an increase of at least 0.5°C in SST projections without anomalies. Change in percent coral cover varied widely across the region within temperature scenarios, with some reefs experiencing local extinction while others remaining relatively unchanged. Sink strength and current thermal stress threshold were found to be significant drivers of these patterns, highlighting the importance of processes that underlie larval connectivity and bleaching sensitivity in coral networks.

3.
Sci Rep ; 8(1): 2866, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29434297

ABSTRACT

Coastal upwelling ecosystems are among the most productive ecosystems in the world, meaning that their response to climate change is of critical importance. Our understanding of climate change impacts on marine ecosystems is largely limited to the open ocean, mainly because coastal upwelling is poorly reproduced by current earth system models. Here, a high-resolution model is used to examine the response of nutrients and plankton dynamics to future climate change in the California Current System (CCS). The results show increased upwelling intensity associated with stronger alongshore winds in the coastal region, and enhanced upper-ocean stratification in both the CCS and open ocean. Warming of the open ocean forces isotherms downwards, where they make contact with water masses with higher nutrient concentrations, thereby enhancing the nutrient flux to the deep source waters of the CCS. Increased winds and eddy activity further facilitate upward nutrient transport to the euphotic zone. However, the plankton community exhibits a complex and nonlinear response to increased nutrient input, as the food web dynamics tend to interact differently. This analysis highlights the difficulty in understanding how the marine ecosystem responds to a future warming climate, given to range of relevant processes operating at different scales.


Subject(s)
Global Warming , Plankton/physiology , California , Ecosystem , Food Supply , Models, Theoretical , Seawater
4.
Glob Chang Biol ; 22(11): 3539-3549, 2016 11.
Article in English | MEDLINE | ID: mdl-27154763

ABSTRACT

Coral reefs are increasingly exposed to elevated temperatures that can cause coral bleaching and high levels of mortality of corals and associated organisms. The temperature threshold for coral bleaching depends on the acclimation and adaptation of corals to the local maximum temperature regime. However, because of larval dispersal, coral populations can receive larvae from corals that are adapted to very different temperature regimes. We combine an offline particle tracking routine with output from a high-resolution physical oceanographic model to investigate whether connectivity of coral larvae between reefs of different thermal regimes could alter the thermal stress threshold of corals. Our results suggest that larval transport between reefs of widely varying temperatures is likely in the Coral Triangle and that accounting for this connectivity may be important in bleaching predictions. This has important implications in conservation planning, because connectivity may allow some reefs to have an inherited heat tolerance that is higher or lower than predicted based on local conditions alone.


Subject(s)
Anthozoa , Larva , Thermotolerance , Animals , Coral Reefs , Temperature
5.
Glob Chang Biol ; 21(7): 2525-2539, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25630514

ABSTRACT

The Coral Triangle encompasses an extensive region of coral reefs in the western tropical Pacific with marine resources that support millions of people. As in all other reef regions, coral reefs in the Coral Triangle have been impacted by anomalously high ocean temperature. The vast majority of bleaching observations to date have been associated with the 1998 La Niña phase of ENSO. To understand the significance of ENSO and other climatic oscillations to heat stress in the Coral Triangle, we use a 5-km resolution Regional Ocean Model System for the Coral Triangle (CT-ROMS) to study ocean temperature thresholds and variability for the 1960-2007 historical period. Heat-stress events are more frequent during La Niña events, but occur under all climatic conditions, reflecting an overall warming trend since the 1970s. Mean sea surface temperature (SST) in the region increased an average of ~ 0.1 °C per decade over the time period, but with considerable spatial variability. The spatial patterns of SST and heat stress across the Coral Triangle reflect the complex bathymetry and oceanography. The patterns did not change significantly over time or with shifts in ENSO. Several regions experienced little to no heat stress over the entire period. Of particular interest to marine conservation are regions where there are few records of coral bleaching despite the presence of significant heat stress, such as in the Banda Sea. Although this may be due to under-reporting of bleaching events, it may also be due to physical factors such as mixing and cloudiness, or biological factors that reduce sensitivity to heat stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...