Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Molecules ; 29(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792085

ABSTRACT

The potential of aerogels as catalysts for the synthesis of a relevant class of bis-heterocyclic compounds such as bis(indolyl)methanes was investigated. In particular, the studied catalyst was a nanocomposite aerogel based on nanocrystalline nickel ferrite (NiFe2O4) dispersed on amorphous porous silica aerogel obtained by two-step sol-gel synthesis followed by gel drying under supercritical conditions and calcination treatments. It was found that the NiFe2O4/SiO2 aerogel is an active catalyst for the selected reaction, enabling high conversions at room temperature, and it proved to be active for three repeated runs. The catalytic activity can be ascribed to both the textural and acidic features of the silica matrix and of the nanocrystalline ferrite. In addition, ferrite nanocrystals provide functionality for magnetic recovery of the catalyst from the crude mixture, enabling time-effective separation from the reaction environment. Evidence of the retention of species involved in the reaction into the catalyst is also pointed out, likely due to the porosity of the aerogel together with the affinity of some species towards the silica matrix. Our work contributes to the study of aerogels as catalysts for organic reactions by demonstrating their potential as well as limitations for the room-temperature synthesis of bis(indolyl)methanes.

2.
Nanomaterials (Basel) ; 13(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38132987

ABSTRACT

The emergence of SARS-CoV-2 variants requires close monitoring to prevent the reoccurrence of a new pandemic in the near future. The Omicron variant, in particular, is one of the fastest-spreading viruses, showing a high ability to infect people and evade neutralization by antibodies elicited upon infection or vaccination. Therefore, the search for broad-spectrum antivirals that can inhibit the infectious capacity of SARS-CoV-2 is still the focus of intense research. In the present work, hyperbranched poly-L-lysine nanopolymers, which have shown an excellent ability to block the original strain of SARS-CoV-2 infection, were modified with L-arginine. A thermal reaction at 240 °C catalyzed by boric acid yielded Lys-Arg hyperbranched nanopolymers. The ability of these nanopolymers to inhibit viral replication were assessed for the original, Delta, and Omicron strains of SARS-CoV-2 together with their cytotoxicity. A reliable indication of the safety profile and effectiveness of the various polymeric compositions in inhibiting or suppressing viral infection was obtained by the evaluation of the therapeutic index in an in vitro prevention model. The hyperbranched L-arginine-modified nanopolymers exhibited a twelve-fold greater therapeutic index when tested with the original strain. The nanopolymers could also effectively limit the replication of the Omicron strain in a cell culture.

3.
Nanomaterials (Basel) ; 13(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37110929

ABSTRACT

The differences between bare carbon dots (CDs) and nitrogen-doped CDs synthesized from citric acid as a precursor are investigated, aiming at understanding the mechanisms of emission and the role of the doping atoms in shaping the optical properties. Despite their appealing emissive features, the origin of the peculiar excitation-dependent luminescence in doped CDs is still debated and intensively being examined. This study focuses on the identification of intrinsic and extrinsic emissive centers by using a multi-technique experimental approach and computational chemistry simulations. As compared to bare CDs, nitrogen doping causes the decrease in the relative content of O-containing functional groups and the formation of both N-related molecular and surface centers that enhance the quantum yield of the material. The optical analysis suggests that the main emission in undoped nanoparticles comes from low-efficient blue centers bonded to the carbogenic core, eventually with surface-attached carbonyl groups, the contribution in the green range being possibly related to larger aromatic domains. On the other hand, the emission features of N-doped CDs are mainly due to the presence of N-related molecules, with the computed absorption transitions calling for imidic rings fused to the carbogenic core as the potential structures for the emission in the green range.

4.
Molecules ; 28(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36985846

ABSTRACT

The self-assembly reaction of the neutral dicyano-bis(1,10-phenanthroline) iron(II) complex with lanthanide ions (Ln = Eu(III), Gd(III), Er(III)) provided two different classes of heterometallic cyano-bridged 3d-4f architectures depending on the nature of the counteranion, irrespective of the size of the 4f metal ion. Tetranuclear oligomers with a squared Fe2Ln2 core were isolated when using nitrate salts, whereas unusual 1D polymeric chains were obtained when resorting to triflate salts under the same synthetic conditions. It is shown that the different structural motifs have a remarkable impact on the thermal stability and the optical properties of the compounds, which display a notable optical ipsochromism of the parent Fe(II) complex upon coordination with the Ln ion. This effect is significantly more pronounced in the polymeric chain than in the Fe2Ln2 oligomer both in solution and in the solid state. Structural evidence suggests that this behavior is likely related to the geometry of the CN-Ln bridge. On the other hand, more extended π-stacking interactions in the oligomer give rise to a broad charge-transfer absorption (600-1500 nm), making this compound promising as NIR absorber. Density Functional Theory calculations and electrochemical studies demonstrate that the observed negative chromism originates from the stabilization of a mixed metal/cyanide character HOMO with respect to a phenanthroline-centered LUMO.

5.
J Colloid Interface Sci ; 634: 402-417, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36542970

ABSTRACT

In this work, we unveil the fluorescence features of citric acid and urea-based Carbon Dots (CDs) through a photo-physical characterization of nanoparticles synthesized, under solvent-free and open-air conditions, within silica-ordered mesoporous silica, as a potential host for solid-state emitting hybrids. Compared to CDs synthesized without silica matrices and dispersed in water, silica-CD hybrids display a broader emission in the green range whose contribution can be increased by UV and blue laser irradiation. The analysis of hybrids synthesized within different silica (MCM-48 and SBA-15) calls for an active role of the matrix in directing the synthesis toward the formation of CDs with a larger content of graphitic N and imidic groups at the expense of N-pyridinic molecules. As a result, CDs tuned in size and with a larger green emission are obtained in the hybrids and are retained once extracted from the silica matrix and dispersed in water. The kinetics of the photo-physics under UV and blue irradiation of hybrid samples show a photo-assisted formation process leading to a further increase of the relative contribution of the green emission, not observed in the water-dispersed reference samples, suggesting that the porous matrix is involved also in the photo-activated process. Finally, we carried out DFT and TD-DFT calculations on the interaction of silica with selected models of CD emitting centers, like surface functional groups (OH and COOH), dopants (graphitic N), and citric acid-based molecules. The combined experimental and theoretical results clearly indicate the presence of molecular species and surface centers both emitting in the blue and green spectral range, whose relative contribution is tuned by the interaction with the surrounding media.


Subject(s)
Graphite , Quantum Dots , Carbon , Silicon Dioxide , Water , Citric Acid
6.
Chem Rev ; 122(16): 13709-13799, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35948072

ABSTRACT

Carbon nanodots (CNDs) are the latest and most shining rising stars among photoluminescent (PL) nanomaterials. These carbon-based surface-passivated nanostructures compete with other related PL materials, including traditional semiconductor quantum dots and organic dyes, with a long list of benefits and emerging applications. Advantages of CNDs include tunable inherent optical properties and high photostability, rich possibilities for surface functionalization and doping, dispersibility, low toxicity, and viable synthesis (top-down and bottom-up) from organic materials. CNDs can be applied to biomedicine including imaging and sensing, drug-delivery, photodynamic therapy, photocatalysis but also to energy harvesting in solar cells and as LEDs. More applications are reported continuously, making this already a research field of its own. Understanding of the properties of CNDs requires one to go to the levels of electrons, atoms, molecules, and nanostructures at different scales using modern molecular modeling and to correlate it tightly with experiments. This review highlights different in silico techniques and studies, from quantum chemistry to the mesoscale, with particular reference to carbon nanodots, carbonaceous nanoparticles whose structural and photophysical properties are not fully elucidated. The role of experimental investigation is also presented. Hereby, we hope to encourage the reader to investigate CNDs and to apply virtual chemistry to obtain further insights needed to customize these amazing systems for novel prospective applications.


Subject(s)
Nanoparticles , Nanostructures , Quantum Dots , Carbon/chemistry , Coloring Agents , Nanoparticles/chemistry , Nanostructures/chemistry , Quantum Dots/chemistry
7.
IEEE Trans Biomed Eng ; 69(6): 2029-2040, 2022 06.
Article in English | MEDLINE | ID: mdl-34882544

ABSTRACT

Magnetic scaffolds have been investigated as promising tools for the interstitial hyperthermia treatment of bone cancers, to control local recurrence by enhancing radio- and chemotherapy effectiveness. The potential of magnetic scaffolds motivates the development of production strategies enabling tunability of the resulting magnetic properties. Within this framework, deposition and drop-casting of magnetic nanoparticles on suitable scaffolds offer advantages such as ease of production and high loading, although these approaches are often associated with a non-uniform final spatial distribution of nanoparticles in the biomaterial. The implications and the influences of nanoparticle distribution on the final therapeutic application have not yet been investigated thoroughly. In this work, poly-caprolactone scaffolds are magnetized by loading them with synthetic magnetic nanoparticles through a drop-casting deposition and tuned to obtain different distributions of magnetic nanoparticles in the biomaterial. The physicochemical properties of the magnetic scaffolds are analyzed. The microstructure and the morphological alterations due to the reworked drop-casting process are evaluated and correlated to static magnetic measurements. THz tomography is used as an innovative investigation technique to derive the spatial distribution of nanoparticles. Finally, multiphysics simulations are used to investigate the influence on the loading patterns on the interstitial bone tumor hyperthermia treatment.


Subject(s)
Bone Neoplasms , Tissue Scaffolds , Biocompatible Materials/chemistry , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/therapy , Humans , Magnetic Phenomena , Magnetics , Tissue Engineering/methods , Tissue Scaffolds/chemistry
8.
Chemistry ; 27(7): 2543-2550, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33196126

ABSTRACT

Carbonized polymer dots (CPDs), a peculiar type of carbon dots, show extremely high quantum yields, making them very attractive nanostructures for application in optics and biophotonics. The origin of the strong photoluminescence of CPDs resides in a complicated interplay of several radiative mechanisms. To understand the correlation between CPD processing and properties, the early stage formation of carbonized polymer dots has been studied. In the synthesis, citric acid monohydrate and 2-amino-2-(hydroxymethyl)propane-1,3-diol have been thermally degraded at 180 °C. The use of an oil bath instead of a more traditional hydrothermal reactor has allowed the CPD properties to be monitored at different reactions times. Transmission electron microscopy, time-resolved photoluminescence, nuclear magnetic resonance, infrared, and Raman spectroscopy have revealed the formation of polymeric species with amide and ester bonds. Quantum chemistry calculations have been employed to investigate the origin of CPD electronic transitions. At short reaction times, amorphous C-dots with 80 % quantum yield, have been obtained.

9.
Sci Rep ; 10(1): 4770, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32179839

ABSTRACT

Highly fluorescent blue and green-emitting carbon dots have been designed to be integrated into sol-gel processing of hybrid organic-inorganic materials through surface modification with an organosilane, 3-(aminopropyl)triethoxysilane (APTES). The carbon dots have been synthesised using citric acid and urea as precursors; the intense fluorescence exhibited by the nanoparticles, among the highest reported in the scientific literature, has been stabilised against quenching by APTES. When the modification is carried out in an aqueous solution, it leads to the formation of silica around the C-dots and an increase of luminescence, but also to the formation of large clusters which do not allow the deposition of optically transparent films. On the contrary, when the C-dots are modified in ethanol, the APTES improves the stability in the precursor sol even if any passivating thin silica shell does not form. Hybrid films containing APTES-functionalized C-dots are transparent with no traces of C-dots aggregation and show an intense luminescence in the blue and green range.

10.
J Magn Reson ; 290: 68-75, 2018 05.
Article in English | MEDLINE | ID: mdl-29574318

ABSTRACT

Contrast agents with a strong R1 dispersion have been shown to be effective in generating target-specific contrast in MRI. The utilization of this R1 field dependence requires the adaptation of an MRI scanner for fast field-cycling (FFC). Here, we present the first implementation and validation of FFC-MRI at a clinical field strength of 3 T. A field-cycling range of ±100 mT around the nominal B0 field was realized by inserting an additional insert coil into an otherwise conventional MRI system. System validation was successfully performed with selected iron oxide magnetic nanoparticles and comparison to FFC-NMR relaxometry measurements. Furthermore, we show proof-of-principle R1 dispersion imaging and demonstrate the capability of generating R1 dispersion contrast at high field with suppressed background signal. With the presented ready-to-use hardware setup it is possible to investigate MRI contrast agents with a strong R1 dispersion at a field strength of 3 T.


Subject(s)
Magnetic Resonance Imaging/methods , Algorithms , Artifacts , Computer Simulation , Contrast Media , Electromagnetic Fields , Ferric Compounds , Image Enhancement , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Spectroscopy , Nanoparticles , Phantoms, Imaging , Reproducibility of Results
11.
Phys Chem Chem Phys ; 19(25): 16775-16784, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28627580

ABSTRACT

Samples of nickel cobaltite, a mixed oxide occurring in the spinel structure which is currently extensively investigated because of its prospective application as ferromagnetic, electrocatalytic, and cost-effective energy storage material were prepared in the form of nanocrystals stabilized in a highly porous silica aerogel and as unsupported nanoparticles. Nickel cobaltite nanocrystals with average size 4 nm are successfully grown for the first time into the silica aerogel provided that a controlled oxidation of the metal precursor phases is carried out, consisting in a reduction under H2 flow followed by mild oxidation in air. The investigation of the average oxidation state of the cations and of their distribution between the sites within the spinel structure, which is commonly described assuming the Ni cations are only located in the octahedral sites, has been carried out by X-ray absorption spectroscopy providing evidence for the first time that the unsupported nickel cobaltite sample has a Ni : Co molar ratio higher than the nominal ratio of 1 : 2 and a larger than expected average overall oxidation state of the cobalt and nickel cations. This is achieved retaining the spinel structure, which accommodates vacancies to counterbalance the variation in oxidation state.

12.
Interface Focus ; 6(6): 20160058, 2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27920896

ABSTRACT

Gold-iron oxide composites were obtained by in situ reduction of an Au(III) precursor by an organic reductant (either potassium citrate or tiopronin) in a dispersion of preformed iron oxide ultrasmall magnetic (USM) nanoparticles. X-ray diffraction, transmission electron microscopy, chemical analysis and mid-infrared spectroscopy show the successful deposition of gold domains on the preformed magnetic nanoparticles, and the occurrence of either citrate or tiopronin as surface coating. The potential of the USM@Au nanoheterostructures as heat mediators for therapy through magnetic fluid hyperthermia was determined by calorimetric measurements under sample irradiation by an alternating magnetic field with intensity and frequency within the safe values for biomedical use. The USM@Au composites showed to be active heat mediators for magnetic fluid hyperthermia, leading to a rapid increase in temperature under exposure to an alternating magnetic field even under the very mild experimental conditions adopted, and their potential was assessed by determining their specific absorption rate (SAR) and compared with the pure iron oxide nanoparticles. Calorimetric investigation of the synthesized nanostructures enabled us to point out the effect of different experimental conditions on the SAR value, which is to date the parameter used for the assessment of the hyperthermic efficiency.

13.
Chempluschem ; 81(4): 421-432, 2016 Apr.
Article in English | MEDLINE | ID: mdl-31968748

ABSTRACT

Copper-based nanoparticles, supported on either a silica aerogel or cubic mesostructured silicas obtained by using two different synthetic protocols, were used as catalysts for the water gas shift reaction. The obtained nanocomposites were thoroughly characterised before and after catalysis through nitrogen adsorption-desorption measurements at -196 °C, TEM, and wide- and low-angle XRD. The samples before catalysis contained nanoparticles of copper oxides (either CuO or Cu2 O), whereas the formation of metallic copper nanoparticles, constituting the active catalytic phase, was observed either by using pre-treatment in a reducing atmosphere or directly during the catalytic reaction owing to the presence of carbon monoxide. A key role in determining the catalytic performances of the samples is played by the ability of different matrices to promote a high dispersion of copper metal nanoparticles. The best catalytic performances are obtained with the aerogel sample, which also exhibits constant carbon monoxide conversion values at constant temperature and reproducible behaviour after subsequent catalytic runs. On the other hand, in the catalysts based on cubic mesostructured silica, the detrimental effects related to sintering of copper nanoparticles are avoided only on the silica support, which is able to produce a reasonable dispersion of the copper nanophase.

14.
Nanoscale ; 6(4): 2238-43, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24424255

ABSTRACT

We synthesize colloidal CdSe@CdS octapod nanocrystals decorated with Pt domains, resulting in a metal-semiconductor heterostructure. We devise a protocol to control the growth of Pt on the CdS surface, realizing both a selective tipping and a non-selective coverage. Ultrafast optical spectroscopy, particularly femtosecond transient absorption, is employed to correlate the dynamics of optical excitations with the nanocrystal morphology. We find two regimes for capture of photoexcited electrons by Pt domains: a slow capture after energy relaxation in the semiconductor, occurring in tipped nanocrystals and resulting in large spatial separation of charges, and an ultrafast capture of hot electrons occurring in nanocrystals covered in Pt, where charge separation happens faster than energy relaxation and Auger recombination. Besides the relevance for fundamental materials science and control at the nanoscale, our nanocrystals may be employed in solar photocatalysis.


Subject(s)
Cadmium Compounds/chemistry , Nanoparticles/chemistry , Platinum/chemistry , Selenium Compounds/chemistry , Semiconductors , Sulfides/chemistry
15.
J Phys Chem A ; 116(47): 11531-5, 2012 Nov 29.
Article in English | MEDLINE | ID: mdl-23106650

ABSTRACT

The optical properties of 7-hydroxy-4-methyl coumarin immobilized on polyethylene glycol support and dissolved in distilled water solution are compared with the optical properties of the dye dissolved in ethanol and discussed on the basis of the formation of different chemical species of the dye molecule. The presence of the polymeric support affects both the absorption and emission features of the coumarin by changing the chemical equilibrium among the different species typically observed at the ground and excited states. The optical properties of synthesized PEG-supported coumarins are able to warrant biomedical applications in water-based environment and enable us to gain insight into the photophysical activity of coumarins; in particular, the steric hindrance of the polymeric support inhibits, as expected, the formation of the tautomeric form of the compound in the excited state, a further proof of the single-step neutral to tautomer reaction in coumarins.


Subject(s)
Hymecromone/analogs & derivatives , Optical Phenomena , Polyethylene Glycols/chemistry , Water/chemistry , Hymecromone/chemistry , Models, Molecular , Molecular Conformation , Solutions
16.
Nanoscale ; 3(8): 3198-207, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21725561

ABSTRACT

Mesoporous silica nanoparticles (MSNs) have been proposed as DNA and drug delivery carriers, as well as efficient tools for fluorescent cell tracking. The major limitation is that MSNs enter cells regardless of a target-specific functionalization. Here we show that non functionalized MSNs, synthesized using a PEG surfactant-based interfacial synthesis procedure, do not enter cells, while a highly specific, receptor mediated, cellular internalization of folic acid (FOL) grafted MSNs (MSN-FOL), occurs exclusively in folate receptor (FR) expressing cells. Neither the classical clathrin pathway nor macropinocytosis is involved in the MSN endocytic process, while fluorescent MSNs (MSN-FITC) enter cells through aspecific, caveolae-mediated, endocytosis. Moreover, internalized particles seem to be mostly exocytosed from cells within 96 h. Finally, cisplatin (Cp) loaded MSN-FOL were tested on cancerous FR-positive (HeLa) or normal FR-negative (HEK293) cells. A strong growth arrest was observed only in HeLa cells treated with MSN-FOL-Cp. The results presented here show that our mesoporous nanoparticles do not enter cells unless opportunely functionalized, suggesting that they could represent a promising vehicle for drug targeting applications.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Drug Carriers/pharmacokinetics , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Polyethylene Glycols/chemistry , Silicon Dioxide/chemistry , Animals , Caveolin 1/metabolism , Cell Line, Tumor , Cisplatin/pharmacokinetics , Clathrin/metabolism , Drug Carriers/chemistry , Drug Delivery Systems/methods , Fluorescein-5-isothiocyanate/chemistry , Folic Acid/chemistry , Folic Acid/pharmacokinetics , Folic Acid Transporters/metabolism , HEK293 Cells , HeLa Cells , Humans , Mice , Microscopy, Electron, Transmission , Models, Biological , Particle Size , Surface-Active Agents/chemistry
17.
Phys Chem Chem Phys ; 10(21): 3108-17, 2008 Jun 07.
Article in English | MEDLINE | ID: mdl-18688375

ABSTRACT

Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) techniques at both Fe and Mn K-edges were used to investigate the formation of MnFe(2)O(4) nanoparticles embedded in a silica aerogel matrix as a function of calcination temperature (at 450, 750 and 900 degrees C). Up to 450 degrees C, two separated highly-disordered phases of iron and manganese are present. With increasing the temperature (to 750 and 900 degrees C), the structure of aerogel nanoparticles becomes progressively similar to that of the spinel structure MnFe(2)O(4) (jacobsite). Quantitative determination of cations distribution in the spinel structure shows that aerogels calcined at 750 and 900 degrees C have a degree of inversion i = 0.20. A pure jacobsite sample synthesised by co-precipitation and used as a reference compound shows a much higher degree of inversion (i = 0.70). The different distribution of iron and manganese cations in the octahedral and tetrahedral sites in pure jacobsite and in the aerogels can be ascribed to partial oxidation of Mn(2+) to Mn(3+) in pure jacobsite, confirmed by XANES analysis, probably due to the synthesis conditions.


Subject(s)
Ferric Compounds/chemistry , Manganese/chemistry , Metal Nanoparticles/chemistry , Absorption , Cations/chemistry , Gels/chemistry , Spectrum Analysis , Temperature , X-Ray Diffraction
18.
Phys Chem Chem Phys ; 10(7): 1043-52, 2008 Feb 21.
Article in English | MEDLINE | ID: mdl-18259644

ABSTRACT

FeCo-SiO2 aerogel nanocomposites with different porosity were obtained using two different sol-gel procedures: the first involves a single acidic step and gives rise to relatively dense aerogels while the second procedure allows one to obtain highly porous aerogels using urea in the second step to promote fast gelation. Samples with different loading of FeCo equimolar alloy and with different Fe : Co ratios were prepared. The magnetic properties of all the nanocomposite aerogels were extensively studied as a function of porosity and composition. Particular attention was paid to the role played by the interparticle interactions, which are mediated by the silica matrix, in determining the collective magnetic behaviour. The kind and strength of magnetic interactions are affected by both the composition and the porosity of the matrix.


Subject(s)
Alloys/chemistry , Cobalt/chemistry , Iron/chemistry , Magnetics , Metal Nanoparticles/chemistry , Silicon Dioxide/chemistry , Gels/chemistry , Particle Size , Porosity , Surface Properties , Temperature , X-Ray Diffraction
19.
Nano Lett ; 5(3): 445-9, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15755092

ABSTRACT

PbSe nanocrystals with rock-salt structure are grown on the tips of colloidal CdS and CdSe nanorods. The facets of wurtzite rods provide a substrate with various degrees of reactivity for the growth of PbSe. The presence of dangling Cd bonds may explain subtle differences between nonequivalent facets resulting in the selective nucleation of PbSe only on one of the two tips of each CdS rod. This approach has the potential to facilitate the fabrication of heterostructures with tailored optical and electronic properties.


Subject(s)
Cadmium Compounds/chemistry , Crystallization/methods , Lead/chemistry , Nanotechnology/methods , Nanotubes/chemistry , Nanotubes/ultrastructure , Selenium Compounds/chemistry , Semiconductors , Sulfides/chemistry , Adsorption , Cadmium Compounds/analysis , Colloids/analysis , Colloids/chemistry , Lead/analysis , Materials Testing , Molecular Conformation , Nanotubes/analysis , Particle Size , Selenium Compounds/analysis , Sulfides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...