Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0299551, 2024.
Article in English | MEDLINE | ID: mdl-38630753

ABSTRACT

Extreme global warming and environmental changes associated with the Toarcian (Lower Jurassic) Oceanic Anoxic Event (T-OAE, ~183 Mya) profoundly impacted marine organisms and terrestrial plants. Despite the exceptionally elevated abundances of fossil insects from strata of this age, only assemblages from Germany and Luxembourg have been studied in detail. Here, we focus on the insect assemblage found in strata recording the T-OAE at Alderton Hill, Gloucestershire, UK, where <15% of specimens have previously been described. We located all known fossil insects (n = 370) from Alderton Hill, and used these to create the first comprehensive taxonomic and taphonomic analysis of the entire assemblage. We show that a diverse palaeoentomofaunal assemblage is preserved, comprising 12 orders, 21 families, 23 genera and 21 species. Fossil disarticulation is consistent with insect decay studies. The number of orders is comparable with present-day assemblages from similar latitudes (30°-40°N), including the Azores, and suggests that the palaeoentomofauna reflects a life assemblage. At Alderton, Hemiptera, Coleoptera and Orthoptera are the commonest (56.1%) orders. The high abundance of Hemiptera (22.1%) and Orthoptera (13.4%) indicates well-vegetated islands, while floral changes related to the T-OAE may be responsible for hemipteran diversification. Predatory insects are relatively abundant (~10% of the total assemblage) and we hypothesise that the co-occurrence of fish and insects within the T-OAE represents a jubilee-like event. The marginally higher proportion of sclerotised taxa compared to present-day insect assemblages possibly indicates adaptation to environmental conditions or taphonomic bias. The coeval palaeoentomofauna from Strawberry Bank, Somerset is less diverse (9 orders, 12 families, 6 genera, 3 species) and is taphonomically biased. The Alderton Hill palaeoentomofauna is interpreted to be the best-preserved and most representative insect assemblage from Toarcian strata in the UK. This study provides an essential first step towards understanding the likely influence of the T-OAE on insects.


Subject(s)
Fossils , Hypoxia , Humans , Animals , Oceans and Seas , Insecta , United Kingdom
2.
Mar Pollut Bull ; 140: 472-484, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30803668

ABSTRACT

Increasingly environmental management seeks to limit the impacts of human activities on ecosystems relative to some 'reference' condition, which is often the presumed pre-impacted state, however such information is limited. We explore how marine ecosystems in deep time (Late Jurassic) are characterised by AZTI's Marine Biotic Index (AMBI), and how the indices responded to natural perturbations. AMBI is widely used to detect the impacts of human disturbance and to establish management targets, and this study is the first application of these indices to a fossil fauna. Our results show AMBI detected changes in past seafloor communities (well-preserved fossil deposits) that underwent regional deoxygenation in a manner analogous to those experiencing two decades of organic pollution. These findings highlight the potential for palaeoecological data to contribute to reconstructions of pre-human marine ecosystems, and hence provide information to policy makers and regulators with greater temporal context on the nature of 'pristine' marine ecosystems.


Subject(s)
Bays/chemistry , Ecosystem , Environmental Monitoring/standards , Geologic Sediments/chemistry , Invertebrates/drug effects , Water Pollutants/analysis , Animals , Ecology , Environmental Monitoring/methods , Paleontology , United Kingdom , Water Pollutants/toxicity
3.
Mar Pollut Bull ; 136: 212-229, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30509801

ABSTRACT

Climate change and anthropogenic nutrient enrichment are driving rapid increases in ocean deoxygenation. These changes cause biodiversity loss and have severe consequences for marine ecosystem functioning and in turn the delivery of ecosystem services upon which humanity depends (e.g. fisheries). We seek to understand how such changes will impact seafloor functioning using biological traits analysis. Results from a sewage-sludge disposal site in the Firth of Clyde, UK spanning 26 years of monitoring showed that substantial changes in macrobenthic nutrient cycling and the provision of food for predators occurred, with elevated functioning on the margins 1-2 km from the centre of the disposal grounds. Thus, changes in food-web dynamics are expected, that weaken benthic pelagic coupling and lower secondary production (such as fisheries). Generally, functioning was conserved, but declined below a ~6% total organic carbon threshold. Similar to other severely deoxygenated systems, the recovery was slow and hysteresis was apparent.


Subject(s)
Aquatic Organisms , Food Chain , Animals , Biodiversity , Climate Change , Ecosystem , Environmental Monitoring/methods , Fisheries , Nutrients , Sewage , United Kingdom , Waste Disposal Facilities
4.
Oecologia ; 183(1): 275-290, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27757544

ABSTRACT

Global warming during the Early Jurassic, and associated widespread ocean deoxygenation, was comparable in scale with the changes projected for the next century. This study quantifies the impact of severe global environmental change on the biological traits of marine communities that define the ecological roles and functions they deliver. We document centennial-millennial variability in the biological trait composition of Early Jurassic (Toarcian) seafloor communities and examine how this changed during the event using biological traits analysis. Environmental changes preceding the global oceanic anoxic event (OAE) produced an ecological shift leading to stressed benthic palaeocommunities with reduced resilience to the subsequent OAE. Changes in traits and ecological succession coincided with major environmental changes; and were of similar nature and magnitude to those in severely deoxygenated benthic communities today despite the very different timescales. Changes in community composition were linked to local redox conditions whereas changes in populations of opportunists were driven by primary productivity. Throughout most of the OAE substitutions by tolerant taxa conserved the trait composition and hence functioning, but periods of severe deoxygenation caused benthic defaunation that would have resulted in functional collapse. Following the OAE recovery was slow probably because the global nature of the event restricted opportunities for recruitment from outside the basin. Our findings suggest that future systems undergoing deoxygenation may initially show functional resilience, but severe global deoxygenation will impact traits and ecosystem functioning and, by limiting the species pool, will slow recovery rates.


Subject(s)
Ecosystem , Global Warming , Environment , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...