Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(12): e0189585, 2017.
Article in English | MEDLINE | ID: mdl-29236789

ABSTRACT

Greasy spot of citrus, caused by Zasmidium citri-griseum (= Mycosphaerella citri), is widely distributed in the Caribbean Basin, inducing leaf spots, premature defoliation, and yield loss. Greasy spot-like symptoms were frequently observed in humid citrus-growing regions in Panama as well as in semi-arid areas in Spain, but disease aetiology was unknown. Citrus-growing areas in Panama and Spain were surveyed and isolates of Mycosphaerellaceae were obtained from citrus greasy spot lesions. A selection of isolates from Panama (n = 22) and Spain (n = 16) was assembled based on their geographical origin, citrus species, and affected tissue. The isolates were characterized based on multi-locus DNA (ITS and EF-1α) sequence analyses, morphology, growth at different temperatures, and independent pathogenicity tests on the citrus species most affected in each country. Reference isolates and sequences were also included in the analysis. Isolates from Panama were identified as Z. citri-griseum complex, and others from Spain attributed to Amycosphaerella africana. Isolates of the Z. citri-griseum complex had a significantly higher optimal growth temperature (26.8°C) than those of A. africana (19.3°C), which corresponded well with their actual biogeographical range. The isolates of the Z. citri-griseum complex from Panama induced typical greasy spot symptoms in 'Valencia' sweet orange plants and the inoculated fungi were reisolated. No symptoms were observed in plants of the 'Ortanique' tangor inoculated with A. africana. These results demonstrate the presence of citrus greasy spot, caused by Z. citri-griseum complex, in Panama whereas A. africana was associated with greasy spot-like symptoms in Spain.


Subject(s)
Ascomycota/pathogenicity , Citrus/microbiology , Panama , Spain
2.
Mol Phylogenet Evol ; 94(Pt B): 765-777, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26516030

ABSTRACT

The precise boundary delineations between taxa in symbiotic associations are very important for evolutionary and ecophysiological studies. Growing evidence indicates that in many cases, the use of either morphological characters or molecular markers results in diversity underestimation. In lichen symbioses, Trebouxia is the most common genus of lichen phycobionts, however, the diversity within this genus has been poorly studied and as such there is no clear species concept. This study constitutes a multifaceted approach incorporating aspects of ultrastructural characterization by TEM and phylogenomics to evaluate the morphological and genetic diversity of phycobionts within the sexually reproducing lichen Ramalina fraxinea in the context of Mediterranean and temperate populations. Results reveal an association with at least seven different Trebouxia lineages belonging to at least two species, T. decolorans and T. jamesii, and diverse combinations of such lineages coexisting within the same thallus depending on the analyzed sample. Some of these lineages are shared by several other non-related lichen taxa. Our findings indicate the existence of a highly diverse assemblage of Trebouxia algae associating with R. fraxinea and suggest a possible incipient speciation within T. decolorans rendering a number of lineages or even actual species. This study stresses the importance of coordinated ultrastructural and molecular analyses to improve estimates of diversity and reveal the coexistence of more than one Trebouxia species within the same thallus. It is also necessary to have clearer species delimitation criteria within the genus Trebouxia and microalgae in general.


Subject(s)
Ascomycota/classification , Chlorophyta/classification , Lichens/classification , Ascomycota/genetics , Ascomycota/ultrastructure , Biological Evolution , Chlorophyta/genetics , Chlorophyta/ultrastructure , Genetic Variation , Lichens/genetics , Lichens/ultrastructure , Microalgae/classification , Microalgae/genetics , Phylogeny , Symbiosis
3.
PLoS One ; 10(3): e0119311, 2015.
Article in English | MEDLINE | ID: mdl-25775250

ABSTRACT

Phytophthora is one of the most important and aggressive plant pathogenic genera in agriculture and forestry. Early detection and identification of its pathways of infection and spread are of high importance to minimize the threat they pose to natural ecosystems. eDNA was extracted from soil and water from forests and plantations in the north of Spain. Phytophthora-specific primers were adapted for use in high-throughput Sequencing (HTS). Primers were tested in a control reaction containing eight Phytophthora species and applied to water and soil eDNA samples from northern Spain. Different score coverage threshold values were tested for optimal Phytophthora species separation in a custom-curated database and in the control reaction. Clustering at 99% was the optimal criteria to separate most of the Phytophthora species. Multiple Molecular Operational Taxonomic Units (MOTUs) corresponding to 36 distinct Phytophthora species were amplified in the environmental samples. Pyrosequencing of amplicons from soil samples revealed low Phytophthora diversity (13 species) in comparison with the 35 species detected in water samples. Thirteen of the MOTUs detected in rivers and streams showed no close match to sequences in international sequence databases, revealing that eDNA pyrosequencing is a useful strategy to assess Phytophthora species diversity in natural ecosystems.


Subject(s)
DNA/genetics , Phytophthora/genetics , Plants/parasitology , Soil/parasitology , Water/parasitology , Biodiversity , DNA/isolation & purification , Phylogeny , Phytophthora/isolation & purification , Sequence Analysis, DNA , Spain
4.
FEMS Microbiol Ecol ; 83(2): 310-23, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22906221

ABSTRACT

The epiphytic lichen Ramalina farinacea is distributed throughout the northern hemisphere in which the same two algal Trebouxia species (provisionally named TR1 and TR9) coexist in every thallus. Ramalina farinacea symbionts were characterized based on the two fungal nuclear loci (nrITS and rpb2) along with the primary and secondary structures of nrITS from each Trebouxia species in the Iberian Peninsula and Canary Islands. The results indicated a noticeable genetic differentiation between mycobionts from these two geographic areas and also suggested concerted changes in the three partners of a lichen symbiosis toward two clearly distinguishable 'holobiont' lineages. Modeling of ITS2 RNA secondary structures suggested their temperature sensitivity in TR1 but not in TR9, which was consistent with the observed superior physiological performance of TR9 phycobionts under relatively high temperatures. Both TR1 and TR9 phycobionts have been also found in a variety of taxonomically distinct lichens with a preferably Mediterranean distribution, being TR1 much more widespread than TR9. Our observations support a model in which ecological diversification and speciation of lichen symbionts in different habitats could include a transient phase consisting of associations with more than one photobiont in individual thalli. Such diversification is likely to be promoted by different physiological backgrounds.


Subject(s)
Ascomycota/genetics , Chlorophyta/genetics , Lichens/genetics , Symbiosis/genetics , Ascomycota/classification , Ascomycota/isolation & purification , Chlorophyta/classification , Europe , Genetic Variation , Genotype , Lichens/classification , Lichens/isolation & purification , Nucleic Acid Conformation , Phylogeny , RNA, Ribosomal/chemistry , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...