ABSTRACT
Ligaria cuneifolia (R. et P.) Tiegh. (Loranthaceae) is a South American hemiparasitic species with antioxidant, antitumoral, antimicrobial, and antilipidemic activities attributed to its polyphenolic content. We studied the polyphenolic pattern of L. cuneifolia during different phenological stages: flowering, fruiting, and post-fruiting. The highest total phenolic content was found in stems at post-fruiting (214 ± 12.1 mg gallic acid eq·g-1 DW) and fruiting (209 ± 13.7 mg gallic acid eq·g-1 DW), followed by post-fruiting leaves (207 ± 17.5 mg gallic acid eq·g-1 DW). Flavonoids accumulated at higher levels in leaves and hydroxycinnamic acids in leaves at flowering and post-fruiting. The polyphenolic pattern was similar between organs from wild plants and in vitro cultures, although at a significantly lower level in the latter ones. The performance of calli growing under a 16 h photoperiod in a modified White medium with 1-naphthalene acetic acid (2.50 µM) and Kinetin (9.20 µM) was better than in the dark. When calli grew in media only with auxins (IAA, NAA, and 2,4-D, all at 2.50 µM concentration), its growth and polyphenolic content improved. Cell suspensions with 2.50 µM NAA and 9.20 µM KIN grew slowly and produced very small amounts of polyphenols. As for the antioxidant activity, it was detected in all samples (approximately 1000 µmol trolox eq·g-1 DW) except fruits, where a lower value was found (328 µmol trolox eq·g-1 DW). In vitro cultures have the lowest antioxidant activity when compared to methanolic extracts from organs of wild specimens. Finally, antimutagenic or mutagenic activity in wild plants and in vitro culture extracts was not detected by the Ames test.
ABSTRACT
Chlamydial infections in humans are widely distributed and are responsible for a variety of acute and chronic diseases. Both Chlamydia trachomatis and Chlamydia pneumoniae can lead to chronic conditions that have been linked to complications and sequelae. This study aimed to develop a culture method in order to detect in vitro antichlamydial activity of different extracts obtained from native Argentinian plants used as antimicrobials in local ethnomedicine and to evaluate their inhibitory activity over Chlamydia trachomatis and Chlamydia pneumoniae growth. The inhibitory activity over different stages of the chlamydial life cycle on cell culture was assessed: the entry, the inclusion developing after entry, and the exponential growth stage. Also, the capability of rendering the cell refractory to chlamydial infection by pre-incubation with the extracts was assayed. Inhibitory activity of water-based and organic-based extracts obtained from Hydrocotyle bonariensis Lam. (Araliaceae), Lithraea molleoides (Vell.) Engl. (Anacardiaceae) and Hybanthus parviflorus (Mutis ex L.f.) Baill. (Violaceae) were tested against five strains of Chlamydia trachomatis (L2/434/BU and four clinical isolates form both neonatal conjunctivitis and adult genital infections, genotypes D, E, and K) and against Chlamydia pneumoniae AR39. The Hydrocotyle bonariensis dichloromethane extract showed a broad inhibitory activity over the exponential growth stage of Chlamydia trachomatis and Chlamydia pneumoniae independently from the chlamydial strain and the cell line. These results suggest a high inhibitory potential on both Chlamydiae species. In order to characterize the Hydrocotyle bonariensis dichloromethane active extract, an 1H-NMR was performed. The 1H-NMR characterization showed a spectrum with characteristic signals of the fatty acid moiety of lipids or cerebrosides, volatile phenolics, phytosterols, methyl triterpenes signals, and glucose moiety of the cerebrosides.