Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Biomedicines ; 10(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36140341

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is considered as the strongest independent risk factor for lung cancer (LC) development, suggesting an overlapping genetic background in both diseases. A common feature of both diseases is aberrant immunity in respiratory epithelia that is mainly regulated by Toll-like receptors (TLRs), key regulators of innate immunity. The function of the flagellin-sensing TLR5 in airway epithelia and pathophysiology of COPD and LC has remained elusive. We performed case−control genetic association and functional studies on the importance of TLR5 in COPD and LC development, comparing Caucasian COPD/LC patients (n = 974) and healthy donors (n = 1283). Association analysis of three single nucleotide polymorphisms (SNPs) (rs725084, rs2072493_N592S, and rs5744174_F616L) indicated the minor allele of rs2072493_N592S to be associated with increased risk for COPD (OR = 4.41, p < 0.0001) and NSCLC (OR = 5.17, p < 0.0001) development and non-small cell LC risk in the presence of COPD (OR = 1.75, p = 0.0031). The presence of minor alleles (rs5744174 and rs725084) in a co-dominant model was associated with overall survival in squamous cell LC patients. Functional analysis indicated that overexpression of the rs2072493_N592S allele affected the activation of NF-κB and AP-1, which could be attributed to impaired phosphorylation of p38 and ERK. Overexpression of TLR5N592S was associated with increased chemosensitivity in the H1299 cell line. Finally, genome-wide transcriptomic analysis on WI-38 and H1299 cells overexpressing TLR5WT or TLR5N592S, respectively, indicated the existence of different transcription profiles affecting several cellular pathways potentially associated with a dysregulated immune response. Our results suggest that TLR5 could be recognized as a potential biomarker for COPD and LC development with functional relevance.

3.
Cancers (Basel) ; 12(10)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992489

ABSTRACT

Familial clustering, twin concordance, and identification of high- and low-penetrance cancer predisposition variants support the idea that there are families that are at a high to moderate excess risk of cancer. To what extent there may be families that are protected from cancer is unknown. We wanted to test genetically whether cancer-free families share fewer breast, colorectal, and prostate cancer risk alleles than the population at large. We addressed this question by whole-genome sequencing (WGS) of 51 elderly cancer-free individuals whose numerous (ca. 1000) family members were found to be cancer-free ('cancer-free families', CFFs) based on face-to-face interviews. The average coverage of the 51 samples in the WGS was 42x. We compared cancer risk allele frequencies in cancer-free individuals with those in the general population available in public databases. The CFF members had fewer loss-of-function variants in suggested cancer predisposition genes compared to the ExAC data, and for high-risk cancer predisposition genes, no pathogenic variants were found in CFFs. For common low-penetrance breast, colorectal, and prostate cancer risk alleles, the results were not conclusive. The results suggest that, in line with twin and family studies, random environmental causes are so dominant that a clear demarcation of cancer-free populations using genetic data may not be feasible.

4.
Int J Mol Sci ; 21(14)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32659970

ABSTRACT

For malignant pleural mesothelioma (MPM) novel therapeutic strategies are urgently needed. In a previous study, we identified 51 putative cancer genes over-expressed in MPM tissues and cell lines. Here, we deepened the study on nine of them (ASS1, EIF4G1, GALNT7, GLUT1, IGF2BP3 (IMP3), ITGA4, RAN, SOD1, and THBS2) to ascertain whether they are truly mesothelial cancer driver genes (CDGs) or genes overexpressed in an adaptive response to the tumoral progression ("passenger genes"). Through a fast siRNA-based screening, we evaluated the consequences of gene depletion on migration, proliferation, colony formation capabilities, and caspase activities of four MPM (Mero-14, Mero-25, IST-Mes2, and NCI-H28) and one SV40-immortalized mesothelial cell line (MeT-5A) as a non-malignant model. The depletion of EIF4G1 and RAN significantly reduced cell proliferation and colony formation and increased caspase activity. In particular, the findings for RAN resemble those observed for other types of cancer. Thus, we evaluated the in vitro effects of importazole (IPZ), a small molecule inhibitor of the interaction between RAN and importin-ß. We showed that IPZ could have effects similar to those observed following RAN gene silencing. We also found that primary cell lines from one out of three MPM patients were sensitive to IPZ. As EIF4G1 and RAN deserve further investigation with additional in vitro and in vivo studies, they emerged as promising CDGs, suggesting that their upregulation could play a role in mesothelial tumorigenesis and aggressiveness. Furthermore, present data propose the molecular pathways dependent on RAN as a putative pharmacological target for MPM patients in the view of a future personalized medicine.


Subject(s)
Eukaryotic Initiation Factor-4G/genetics , Mesothelioma, Malignant/genetics , Pleural Neoplasms/genetics , Pleural Neoplasms/pathology , ran GTP-Binding Protein/genetics , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Epithelium/drug effects , Epithelium/pathology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Mesothelioma, Malignant/pathology , Quinazolines/pharmacology , RNA, Small Interfering/genetics , Small Molecule Libraries/pharmacology , beta Karyopherins/genetics
5.
Article in English | MEDLINE | ID: mdl-32265040

ABSTRACT

Chronic kidney disease (CKD) is a multifactorial disorder with an important genetic component, and several studies have demonstrated potential associations with allelic variants. In addition, CKD patients are also characterized by high levels of genomic damage. Nevertheless, no studies have established relationships between DNA damage, or genomic instability present in CKD patients, and gene polymorphisms. To fill in this gap, the potential role of polymorphisms in genes involved in base excision repair (OGG1, rs1052133; MUTYH, rs3219489; XRCC1, rs25487), nucleotide excision repair (ERCC2/XPD, rs1799793, rs171140, rs13181; ERCC4, rs3136166); phase II metabolism (GSTP1, rs749174; GSTO1, rs2164624; GSTO2, rs156697), and antioxidant enzymes (SOD1, rs17880135, rs1041740, rs202446; SOD2, rs4880; CAT, rs1001179; GPX1, rs17080528; GPX3, rs870406: GPX4, rs713041) were inquired. In addition, some genes involved in CKD (AGT, rs5050; GLO1, rs386572987; SHROOM3, rs17319721) were also evaluated. The genomic damage, the genomic instability, and oxidative damage were evaluated by using the micronucleus and the comet assay in 589 donors (415 CKD patients and 174 controls). Our results showed significant associations between genomic damage and genes directly involved in DNA repair pathways (XRCC1, and ERCC2), and with genes encoding for antioxidant enzymes (SOD1 and GPX1). GSTO2, as a gene involved in phase II metabolism, and MUTYH showed also an association with genomic instability. Interestingly, the three genes associated with CKD (AGT, GLO1, and SHROOM3) showed associations with both the high levels of oxidatively damaged DNA and genomic instability. These results support our view that genomic instability can be considered a biomarker of the CKD status.


Subject(s)
Angiotensinogen/genetics , DNA Repair , Genomic Instability , Lactoylglutathione Lyase/genetics , Microfilament Proteins/genetics , Renal Insufficiency, Chronic/genetics , Adult , Aged , Aged, 80 and over , Angiotensinogen/metabolism , Case-Control Studies , Comet Assay , DNA Damage , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Genetic Predisposition to Disease , Genome, Human , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Humans , Lactoylglutathione Lyase/metabolism , Male , Microfilament Proteins/metabolism , Micronucleus Tests , Middle Aged , Polymorphism, Single Nucleotide , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/physiopathology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , X-ray Repair Cross Complementing Protein 1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism , Xeroderma Pigmentosum Group D Protein/genetics , Xeroderma Pigmentosum Group D Protein/metabolism , Glutathione Peroxidase GPX1
6.
Sci Rep ; 10(1): 144, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31924810

ABSTRACT

Chronic kidney disease (CKD) patients have many affected physiological pathways. Variations in the genes regulating these pathways might affect the incidence and predisposition to this disease. A total of 722 Spanish adults, including 548 patients and 174 controls, were genotyped to better understand the effects of genetic risk loci on the susceptibility to CKD. We analyzed 38 single nucleotide polymorphisms (SNPs) in candidate genes associated with the inflammatory response (interleukins IL-1A, IL-4, IL-6, IL-10, TNF-α, ICAM-1), fibrogenesis (TGFB1), homocysteine synthesis (MTHFR), DNA repair (OGG1, MUTYH, XRCC1, ERCC2, ERCC4), renin-angiotensin-aldosterone system (CYP11B2, AGT), phase-II metabolism (GSTP1, GSTO1, GSTO2), antioxidant capacity (SOD1, SOD2, CAT, GPX1, GPX3, GPX4), and some other genes previously reported to be associated with CKD (GLO1, SLC7A9, SHROOM3, UMOD, VEGFA, MGP, KL). The results showed associations of GPX1, GSTO1, GSTO2, UMOD, and MGP with CKD. Additionally, associations with CKD related pathologies, such as hypertension (GPX4, CYP11B2, ERCC4), cardiovascular disease, diabetes and cancer predisposition (ERCC2) were also observed. Different genes showed association with biochemical parameters characteristic for CKD, such as creatinine (GPX1, GSTO1, GSTO2, KL, MGP), glomerular filtration rate (GPX1, GSTO1, KL, ICAM-1, MGP), hemoglobin (ERCC2, SHROOM3), resistance index erythropoietin (SOD2, VEGFA, MTHFR, KL), albumin (SOD1, GSTO2, ERCC2, SOD2), phosphorus (IL-4, ERCC4 SOD1, GPX4, GPX1), parathyroid hormone (IL-1A, IL-6, SHROOM3, UMOD, ICAM-1), C-reactive protein (SOD2, TGFB1,GSTP1, XRCC1), and ferritin (SOD2, GSTP1, SLC7A9, GPX4). To our knowledge, this is the second comprehensive study carried out in Spanish patients linking genetic polymorphisms and CKD.


Subject(s)
Polymorphism, Single Nucleotide , Renal Insufficiency, Chronic/genetics , Female , Genotype , Humans , Male , Middle Aged , Spain
7.
Cancer Med ; 9(4): 1473-1484, 2020 02.
Article in English | MEDLINE | ID: mdl-31869529

ABSTRACT

OBJECTIVE: The TLR3/cGAS-STING-IFN signaling has recently been reported to be disturbed in colorectal cancer due to deregulated expression of the genes involved. Our study aimed to investigate the influence of potential regulatory variants in these genes on the risk of sporadic colorectal cancer (CRC) in a Czech cohort of 1424 CRC patients and 1114 healthy controls. METHODS: The variants in the TLR3, CGAS, TMEM173, IKBKE, and TBK1 genes were selected using various online bioinformatic tools, such as UCSC browser, HaploReg, Regulome DB, Gtex Portal, SIFT, PolyPhen2, and miRNA prediction tools. RESULTS: Logistic regression analysis adjusted for age and sex detected a nominal association between CRC risk and three variants, CGAS rs72960018 (OR: 1.68, 95% CI: 1.11-2.53, P-value = .01), CGAS rs9352000 (OR: 2.02, 95% CI: 1.07-3.84, P-value = .03) and TMEM173 rs13153461 (OR: 1.53, 95% CI: 1.03-2.27, P-value = .03). Their cumulative effect revealed a threefold increased CRC risk in carriers of 5-6 risk alleles compared to those with 0-2 risk alleles. Epistatic interactions between these genes and the previously genotyped IFNAR1, IFNAR2, IFNA, IFNB, IFNK, IFNW, IRF3, and IRF7 genes, were computed to test their effect on CRC risk. Overall, we obtained nine pair-wise interactions within and between the CGAS, TMEM173, IKBKE, and TBK1 genes. Two of them remained statistically significant after Bonferroni correction. Additional 52 interactions were observed when IFN variants were added to the analysis. CONCLUSIONS: Our data suggest that epistatic interactions and a high number of risk alleles may play an important role in CRC carcinogenesis, offering novel biological understanding for the CRC management.


Subject(s)
Carcinogenesis/genetics , Colorectal Neoplasms/genetics , Epistasis, Genetic , Gene Expression Regulation, Neoplastic , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cohort Studies , Colon/diagnostic imaging , Colon/pathology , Colonoscopy , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/pathology , Computational Biology , Female , Genotyping Techniques , Healthy Volunteers , Humans , I-kappa B Kinase/genetics , Interferons/genetics , Male , Membrane Proteins/genetics , Middle Aged , Nucleotidyltransferases/genetics , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases/genetics , Rectum/diagnostic imaging , Rectum/pathology , Signal Transduction/genetics , Toll-Like Receptor 3/genetics , Young Adult
8.
Genes (Basel) ; 10(10)2019 10 09.
Article in English | MEDLINE | ID: mdl-31601004

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a chronic disease characterized by a progressive decline in lung function due to airflow limitation, mainly related to IL-1ß-induced inflammation. We have hypothesized that single nucleotide polymorphisms (SNPs) in NLRP genes, coding for key regulators of IL-1ß, are associated with pathogenesis and clinical phenotypes of COPD. We recruited 704 COPD individuals and 1238 healthy controls for this study. Twenty non-synonymous SNPs in 10 different NLRP genes were genotyped. Genetic associations were estimated using logistic regression, adjusting for age, gender, and smoking history. The impact of genotypes on patients' overall survival was analyzed with the Kaplan-Meier method with the log-rank test. Serum IL-1ß concentration was determined by high sensitivity assay and expression analysis was done by RT-PCR. Decreased lung function, measured by a forced expiratory volume in 1 s (FEV1% predicted), was significantly associated with the minor allele genotypes (AT + TT) of NLRP1 rs12150220 (p = 0.0002). The same rs12150220 genotypes exhibited a higher level of serum IL-1ß compared to the AA genotype (p = 0.027) in COPD patients. NLRP8 rs306481 minor allele genotypes (AG + AA) were more common in the Global Initiative for Chronic Obstructive Lung Disease (GOLD) definition of group A (p = 0.0083). Polymorphisms in NLRP1 (rs12150220; OR = 0.55, p = 0.03) and NLRP4 (rs12462372; OR = 0.36, p = 0.03) were only nominally associated with COPD risk. In conclusion, coding polymorphisms in NLRP1 rs12150220 show an association with COPD disease severity, indicating that the fine-tuning of the NLRP1 inflammasome could be important in maintaining lung tissue integrity and treating the chronic inflammation of airways.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Nod Signaling Adaptor Proteins/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aged , Alleles , Apoptosis Regulatory Proteins/metabolism , Case-Control Studies , Female , Forced Expiratory Volume/genetics , Gene Frequency/genetics , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Genotype , Haplotypes/genetics , Humans , Interleukin-1beta/analysis , Interleukin-1beta/blood , Kaplan-Meier Estimate , Lung/pathology , Male , Middle Aged , NLR Proteins , Nod Signaling Adaptor Proteins/metabolism , Phenotype , Polymorphism, Single Nucleotide/genetics , Pulmonary Disease, Chronic Obstructive/physiopathology , Respiratory Function Tests/methods
10.
PLoS One ; 14(5): e0216666, 2019.
Article in English | MEDLINE | ID: mdl-31091244

ABSTRACT

Mucins and their glycosylation have been suggested to play an important role in colorectal carcinogenesis. We examined potentially functional genetic variants in the mucin genes or genes involved in their glycosylation with respect to colorectal cancer (CRC) risk and clinical outcome. We genotyped 23 single nucleotide polymorphisms (SNPs) covering 123 SNPs through pairwise linkage disequilibrium (r2>0.80) in the MUC1, MUC2, MUC4, MUC5AC, MUC6, and B3GNT6 genes in a hospital-based case-control study of 1532 CRC cases and 1108 healthy controls from the Czech Republic. We also analyzed these SNPs in relation to overall survival and event-free survival in a subgroup of 672 patients. Among patients without distant metastasis at the time of diagnosis, two MUC4 SNPs, rs3107764 and rs842225, showed association with overall survival (HR 1.40, 95%CI 1.08-1.82, additive model, log-rank p = 0.004 and HR 0.64, 95%CI 0.42-0.99, recessive model, log-rank p = 0.01, respectively) and event-free survival (HR 1.31, 95%CI 1.03-1.68, log-rank p = 0.004 and HR 0.64, 95%CI 0.42-0.96, log-rank p = 0.006, respectively) after adjustment for age, sex and TNM stage. Our data suggest that genetic variation especially in the transmembrane mucin gene MUC4 may play a role in the survival of CRC and further studies are warranted.


Subject(s)
Colorectal Neoplasms/genetics , Mucin-4/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Case-Control Studies , Colonic Neoplasms/genetics , Colonic Neoplasms/mortality , Colonic Neoplasms/pathology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Czech Republic , Disease-Free Survival , Female , Genotype , Glycosylation , Humans , Kaplan-Meier Estimate , Linkage Disequilibrium , Male , Middle Aged , Mucin-4/metabolism , Mucins/genetics , Mucins/metabolism , Polymorphism, Single Nucleotide/genetics , Progression-Free Survival , Risk Factors
11.
Mutat Res Genet Toxicol Environ Mutagen ; 836(Pt A): 13-21, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30389156

ABSTRACT

Human malignancies are often hallmarked with genomic instability, which itself is also considered a causative event in malignant transformation. Genomic instability may manifest itself as genetic changes in the nucleotide sequence of DNA, or as structural or numerical changes of chromosomes. Unrepaired or insufficiently repaired DNA double-strand breaks, as well as telomere shortening, are important contributors in the formation of structural chromosomal aberrations (CAs). In the present review, we discuss potential mechanisms behind the formation of CAs and their relation to cancer. Based on our own studies, we also illustrate how inherited genetic variation may modify the frequency and types of CAs occurring in humans. Recently, we published a series of studies on variations in genes relevant to maintaining genomic integrity, such as those encoding xenobiotic-metabolising enzymes, DNA repair, the tumour suppressor TP53, the spindle assembly checkpoint, and cyclin D1 (CCND1). While individually genetic variation in these genes exerted small modulating effects, in interactions they were associated with CA frequencies in peripheral blood lymphocytes of healthy volunteers. Moreover, we observed opposite associations between the CCND1 splice site polymorphism rs9344 G870A and the frequency of CAs compared to their association with translocation t(11,14). We discuss the functional consequences of the CCND1 gene in interplay with DNA damage response and DNA repair during malignant transformation. Our review summarizes existing evidence that gene variations in relevant cellular pathways modulate the frequency of CAs, predominantly in a complex interaction. More functional/mechanistic studies elucidating these observations are required. Several questions emerge, such as the role of CAs in malignancies with respect to a particular phenotype and heterogeneity, the formation of CAs during the process of malignant transformation, and the formation of CAs in individual types of lymphocytes in relation to the immune response.


Subject(s)
Chromosome Aberrations , DNA Damage , DNA Repair , Neoplasms/genetics , Neoplasms/pathology , Polymorphism, Genetic , Humans
12.
PLoS One ; 13(6): e0199350, 2018.
Article in English | MEDLINE | ID: mdl-29928061

ABSTRACT

Nod-like receptors (NLRs) are important innate pattern recognition receptors and regulators of inflammation or play a role during development. We systematically analysed 41 non-synonymous single nucleotide polymorphisms (SNPs) in 21 NLR genes in a Czech discovery cohort of sporadic colorectal cancer (CRC) (1237 cases, 787 controls) for their association with CRC risk and survival. Five SNPs were found to be associated with CRC risk and eight with survival at 5% significance level. In a replication analysis using data of two large genome-wide association studies (GWASs) from Germany (DACHS: 1798 cases and 1810 controls) and Scotland (2210 cases and 9350 controls) the associations found in the Czech discovery set were not confirmed. However, expression analysis in human gut-related tissues and immune cells revealed that the NLRs associated with CRC risk or survival in the discovery set were expressed in primary human colon or rectum cells, CRC tissue and/or cell lines, providing preliminary evidence for a potential involvement of NLRs in general in CRC development and/or progression. Most interesting was the finding that the enigmatic development-related NLRP5 (also known as MATER) was not expressed in normal colon tissue but in colon cancer tissue and cell lines. Future studies may show whether regulatory variants instead of coding variants might affect the expression of NLRs and contribute to CRC risk and survival.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Association Studies , Genetic Variation , NLR Proteins/genetics , Open Reading Frames/genetics , Aged , Case-Control Studies , Czech Republic , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Hematopoiesis/genetics , Humans , Male , Polymorphism, Single Nucleotide/genetics , Risk Factors , Survival Analysis
13.
Eur J Gastroenterol Hepatol ; 30(8): 838-842, 2018 08.
Article in English | MEDLINE | ID: mdl-29762254

ABSTRACT

BACKGROUND: NLRC5 is an interferon γ-inducible protein, which plays a role in immune surveillance with a potential influence on cancer survival. OBJECTIVE: We aimed to evaluate the effect of potential regulatory variants in NLRC5 on overall survival and survival after 5-fluorouracil (5-FU)-based therapy of colorectal cancer (CRC) patients. PATIENTS AND METHODS: We carried out a case-only study in a Czech population of 589 cases; 232 received 5-FU-based therapy. Eleven variants within NLRC5 were selected using in-silico tools. Associations between polymorphisms and survival were assessed by Cox regression analysis adjusting for age at diagnosis, sex, and TNM stage. Survival curves were derived using the Kaplan-Meier method. RESULTS: Two variants showed a significant association with survival. All patients and metastasis-free patients at the time of diagnosis (pM0) who were homozygous carriers of the minor allele of rs27194 had a decreased overall survival (OSall and OSpM0) and event-free survival (EFSpM0) under a recessive model (OSall P=0.003, OSpM0 P=0.005, EFSpM0 P=0.01, respectively). OS was also decreased for all patients and for pM0 patients who carried at least one minor allele of rs289747 (OSall P=0.03 and OSpM0 P=0.003, respectively). Among CRC patients, who underwent a 5-FU-based adjuvant regimen, rs12445252 was associated with OSall, OSpM0 and EFSpM0, according to the dosage of the minor allele T (OSall P=0.0004, OSpM0 P=0.0001, EFSpM0 P=0.008, respectively). CONCLUSION: Our results showed that polymorphisms in NLRC5 may be used as prognostic markers of survival of CRC patients, as well as for survival in response to 5-FU treatment.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Fluorouracil/administration & dosage , Intracellular Signaling Peptides and Proteins/genetics , Polymorphism, Single Nucleotide , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Case-Control Studies , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Czech Republic , Disease-Free Survival , Female , Fluorouracil/adverse effects , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Staging , Phenotype , Proportional Hazards Models , Risk Factors , Time Factors , Treatment Outcome
14.
PLoS One ; 13(2): e0192385, 2018.
Article in English | MEDLINE | ID: mdl-29408916

ABSTRACT

Constitutive activation of interferon signaling pathways has been reported in colorectal cancer (CRC), leading to a strong CD8+ T cell response through stimulation of NLRC5 expression. Primed CD8+ T cell expansion, however, may be negatively regulated by PD-L1 expression. Additionally, aberrant PD-L1 expression enables cancer cells to escape the immune attack. Our study aimed to select potential regulatory variants in the NLRC5 and PD-L1 genes by using several online in silico tools, such as UCSC browser, HaploReg, Regulome DB, Gtex Portal, microRNA and transcription factor binding site prediction tools and to investigate their influence on CRC risk in a Czech cohort of 1424 CRC patients and 1114 healthy controls. Logistic regression analysis adjusted for age and gender reported a moderate association between rectal cancer risk and two NLRC5 SNPs, rs1684575 T>G (OR: 1.60, 95% CI: 1.13-2.27, recessive model) and rs3751710 (OR: 0.70, 95% CI: 0.51-0.96, dominant model). Given that a combination of genetic variants, rather than a single polymorphism, may explain better the genetic etiology of CRC, we studied the interplay between the variants within NLRC5, PD-L1 and the previously genotyped IFNGR1 and IFNGR2 variants, to evaluate their involvement in the risk of CRC development. Overall we obtained 18 pair-wise interactions within and between the NLRC5 ad PD-L1 genes and 6 more when IFNGR variants were added. Thirteen out of the 24 interactions were below the threshold for the FDR calculated and controlled at an arbitrary level q*<0.10. Furthermore, the interaction IFNGR2 rs1059293 C>T-NLRC5 rs289747 G>A (P<0.0001) remained statistically significant even after Bonferroni correction. Our data suggest that not only a single genetic variant but also an interaction between two or more variants within genes involved in immune regulation may play important roles in the onset of CRC, providing therefore novel biological information, which could eventually improve CRC risk management but also PD-1-based immunotherapy in CRC.


Subject(s)
B7-H1 Antigen/genetics , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Intracellular Signaling Peptides and Proteins/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cohort Studies , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
15.
Genes Cancer ; 8(1-2): 438-452, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28435517

ABSTRACT

Malignant pleural mesothelioma (MPM) is a cancer of the pleural cavity resistant to chemotherapy. The identification of novel therapeutic targets is needed to improve its poor prognosis. Following a review of literature and a screening of specimens we found that platelet-derived growth factor receptor beta (PDGFRB) is over-expressed, but not somatically mutated, in MPM tissues. We aimed to ascertain whether PDGFRB is a MPM-cancer driver gene. The approaches employed included the use of gene silencing and the administration of small molecules, such as crenolanib and imatinib (PDGFR inhibitors) on MPM cell lines (IstMes2, Mero-14, Mero-25). Met5A cells were used as non-malignant mesothelial cell line. PDGFRB-silencing caused a decrease in the proliferation rate, and a reduced colony formation capacity, as well as an increase of the share of cells in sub-G1 and in G2 phase, and increased apoptotic rate of MPM cell lines. Loss of migration ability was also observed. Similar, or even further enhanced, results were obtained with crenolanib. Imatinib showed the least effective activity on the phenotype. In conclusion, our study highlights PDGFRB as target with a clear role in MPM tumorigenesis and provided a rationale to explore further the efficacy of crenolanib in MPM patients, with promising results.

16.
Article in English | MEDLINE | ID: mdl-27508007

ABSTRACT

BACKGROUND: In the course of our whole-genome sequencing efforts, we have developed a pipeline for analyzing germline genomes from Mendelian types of cancer pedigrees (familial cancer variant prioritization pipeline, FCVPP). RESULTS: The variant calling step distinguishes two types of genomic variants: single nucleotide variants (SNVs) and indels, which undergo technical quality control. Mendelian types of variants are assumed to be rare and variants with frequencies higher that 0.1 % are screened out using human 1000 Genomes (Phase 3) and non-TCGA ExAC population data. Segregation in the pedigree allows variants to be present in affected family members and not in old, unaffected ones. The effectiveness of variant segregation depends on the number and relatedness of the family members: if over 5 third-degree (or more distant) relatives are available, the experience has shown that the number of likely variants is reduced from many hundreds to a few tens. These are then subjected to bioinformatics analysis, starting with the combined annotation dependent depletion (CADD) tool, which predicts the likelihood of the variant being deleterious. Different sets of individual tools are used for further evaluation of the deleteriousness of coding variants, 5' and 3' untranslated regions (UTRs), and intergenic variants. CONLUSIONS: The likelihood of success of the present genomic pipeline in finding novel high- or medium-penetrant genes depends on many steps but first and foremost, the pedigree needs to be reasonably large and the assignments and diagnoses among the members need to be correct.

SELECTION OF CITATIONS
SEARCH DETAIL
...