Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570913

ABSTRACT

O. ficus-indica (prickly pear cactus) is an important forage and food source in arid and semiarid ecosystems and is the most important cactus species in cultivation globally. The high degree of apomixis in the species is a hindrance in plant breeding programs where genetic segregation is sought for the selection of superior genotypes. To understand if in ovulo embryo rescue could increase the proportion of zygotic seedlings, we compared the mature seed-derived seedlings with those regenerated from in vitro embryo rescue at 20, 25, 30, 35, and 40 post-anthesis days (PADs) in four Italian cultivars. The seedlings were classified as apomictic or zygotic based on molecular marker analysis using inter-sequence single repeat (ISSR) primers. Multiple embryos were recovered from all the cultured immature ovules, and plantlets were regenerated and acclimatized to the field post hardening, with success rates ranging from 62% ('Senza spine') to 83% ('Gialla'). The level of polyembryony differed among cultivars and recovery dates, with the highest being 'Rossa', producing 4.8 embryos/ovule at 35 PADs, and 'Gialla', the lowest, with 2.7 at 40 PADs. The maximum number of embryos observed within a single ovule was 14 in 'Trunzara bianca'. ISSR analysis revealed that ovule culture at 35 PADs produced the highest percentage of zygotic seedlings in all the cultivars, from 51% ('Rossa') to 98% ('Gialla'), with a high genotype effect as well. Mature seeds produced much fewer seedlings per seed, ranging from 1.2 in 'Trunzara bianca' to 2.0 in 'Rossa' and a lower percentage of zygotic seedlings (from 14% in 'Rossa' to 63% in 'Gialla'). Our research opens a pathway to increase the availability of zygotic seedlings in O. ficus-indica breeding programs through in ovulo embryo culture.

2.
Plants (Basel) ; 11(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35890445

ABSTRACT

Robust protocols for the regeneration of somatic embryos in vitro are essential for the efficient use of the most modern biotechnologies. Unfortunately, in perennial trees such as Citrus, plants regenerated from juvenile tissues usually exhibit strong, undesirable juvenile characters such as thorny habit and delayed flowering and fruit production. In this work, we tested whether the cell types (nucellar and stigma/style) used to regenerate Citrus plants through somatic embryogenesis affected the transition from the juvenile to mature phase. The results show that regenerants from nucellar cells presented persistent juvenile characters, whereas plants originating from stigma/style explants transited to the mature phase more rapidly. Our observations support the hypothesis that the totipotent cells originated from different cell types are not equivalent, possibly by maintaining memory of their previously differentiated state.

3.
Plants (Basel) ; 10(11)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34834906

ABSTRACT

This study is the first approach to in vitro asymbiotic germination of two species of Sicilian threatened terrestrial orchids, Anacamptis longicornu and Ophrys panormitana. Seeds were collected in the wild and cultured in two different media-Orchimax medium (OM) and Murashige and Skoog (MS)-and exposed to different photoperiods and temperatures to evaluate the best conditions for the specific stages of development. The germination of A. longicornu was very high on OM (95.5%) and lower on MS medium (21.4%), whereas O. panormitana germinated only on OM medium, with significantly lower percentages (12.0%), compared with A. longicornu. This difference is caused by variation in quality and quantity of nutrients used, primarily by nitrogen source. The results show that temperature and photoperiod widely affect seed germination and development. Although further investigations on asymbiotic and symbiotic germination are needed for the improvement of conservation of Mediterranean terrestrial orchids, our results contribute to the conservation of this group of plants.

4.
Cells ; 10(6)2021 05 28.
Article in English | MEDLINE | ID: mdl-34071294

ABSTRACT

Polyploidy plays an important role in plant adaptation to biotic and abiotic stresses. Alterations of the ploidy in grapevine plants regenerated via somatic embryogenesis (SE) may provide a source of genetic variability useful for the improvement of agronomic characteristics of crops. In the grapevine, the SE induction process may cause ploidy changes without alterations in DNA profile. In the present research, tetraploid plants were observed for 9.3% of 'Frappato' grapevine somatic embryos regenerated in medium supplemented with the growth regulators ß-naphthoxyacetic acid (10 µM) and N6-benzylaminopurine (4.4 µM). Autotetraploid plants regenerated via SE without detectable changes in the DNA profiles were transferred in field conditions to analyze the effect of polyploidization. Different ploidy levels induced several anatomical and morphological changes of the shoots and mature leaves. Alterations have been also observed in stomata. The length and width of stomata of tetraploid leaves were 39.9 and 18.6% higher than diploids, respectively. The chloroplast number per guard cell pair was higher (5.2%) in tetraploid leaves. On the contrary, the stomatal index was markedly decreased (12%) in tetraploid leaves. The observed morphological alterations might be useful traits for breeding of grapevine varieties in a changing environment.


Subject(s)
Plant Leaves , Plant Shoots , Plant Stomata , Vitis , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Shoots/embryology , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Stomata/embryology , Plant Stomata/genetics , Plant Stomata/growth & development , Polyploidy , Vitis/embryology , Vitis/genetics , Vitis/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...