Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 10468, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37380718

ABSTRACT

We demonstrate the possibility to modify the Brillouin scattering properties of a microstructured pure-silica core optical fiber, by infiltrating a liquid inside its holes. In particular, we show that the dependence of the Brillouin frequency shift (BFS) on the temperature can be reduced by infiltration, owing to the large negative thermo-optic coefficient of the liquid. Infiltrating a chloroform-acetonitrile mixture with a refractive index of 1.365 inside the holes of a suspended-core fiber with a core diameter of 3 µm, the BFS temperature sensing coefficient is reduced by ≈ 21%, while the strain sensitivity remains almost unaltered. Besides tuning the temperature sensing coefficient, the proposed platform could find other applications in Brillouin sensing, such as distributed electrical and magnetic measurements, or enhanced Brillouin gain in fibers infiltrated with high nonlinear optical media.

2.
Sensors (Basel) ; 23(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36904622

ABSTRACT

The employability of photonics technology in the modern era's highly demanding and sophisticated domain of aerospace and submarines has been an appealing challenge for the scientific communities. In this paper, we review our main results achieved so far on the use of optical fiber sensors for safety and security in innovative aerospace and submarine applications. In particular, recent results of in-field applications of optical fiber sensors in aircraft monitoring, from a weight and balance analysis to vehicle Structural Health Monitoring (SHM) and Landing Gear (LG) monitoring, are presented and discussed. Moreover, underwater fiber-optic hydrophones are presented from the design to marine application.

3.
Sensors (Basel) ; 23(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36904762

ABSTRACT

Our group, involving researchers from different universities in Campania, Italy, has been working for the last twenty years in the field of photonic sensors for safety and security in healthcare, industrial and environment applications. This is the first in a series of three companion papers. In this paper, we introduce the main concepts of the technologies employed for the realization of our photonic sensors. Then, we review our main results concerning the innovative applications for infrastructural and transportation monitoring.

4.
Sensors (Basel) ; 23(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36991894

ABSTRACT

In order to complete this set of three companion papers, in this last, we focus our attention on environmental monitoring by taking advantage of photonic technologies. After reporting on some configurations useful for high precision agriculture, we explore the problems connected with soil water content measurement and landslide early warning. Then, we concentrate on a new generation of seismic sensors useful in both terrestrial and under water contests. Finally, we discuss a number of optical fiber sensors for use in radiation environments.

5.
Sensors (Basel) ; 23(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36772139

ABSTRACT

In this paper, we propose and demonstrate a damage detection technique based on the automatic classification of the Lamb wave signals acquired on a metallic plate. In the reported experiments, Lamb waves are excited in an aluminum plate through a piezoelectric transducer glued onto the monitored structure. The response of the monitored structure is detected through a high-resolution phase-sensitive optical time-domain reflectometer (ϕ-OTDR). The presence and location of a small perturbation, induced by placing a lumped mass of 5 g on the plate, are determined by processing the optical fiber sensor data through support vector machine (SVM) classifiers trained with experimental data. The results show that the proposed method takes full advantage of the multipoint sensing nature of the ϕ-OTDR technology, resulting in accurate damage detection and localization.

6.
Sensors (Basel) ; 21(21)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34770339

ABSTRACT

This paper shows the results of the monitoring of the deformations of a tunnel, carried out using a distributed optical fiber strain sensor based on stimulated Brillouin scattering. The artificial tunnel of the national railway crosses the accumulation zone of an active landslide, the Varco d'Izzo earthflow, in the southern Italian Apennines. Severely damaged by the landslide movements, the tunnel was demolished and rebuilt in 1992 as a reinforced concrete box flanked by two deep sheet pile walls. In order to detect the onset of potentially dangerous strains of the tunnel structure and follow their time trend, the internal deformations of the tunnel are also monitored by a distributed fiber-optic strain sensor since 2016. The results of the monitoring activity show that the deformation profiles are characterized by strain peaks in correspondence of the structural joints. Furthermore, the elongation of the fiber strands crossing the joints is consistent with the data derived by other measurement systems. Experiments revealed an increase in the time rate of the fiber deformation in the first and last part of the monitoring period when the inclinometers of the area also recorded an acceleration in the landslide movements.


Subject(s)
Landslides , Optical Fibers , Fiber Optic Technology , Monitoring, Physiologic
7.
Sensors (Basel) ; 21(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34833589

ABSTRACT

We report the experimental application of distributed optical fiber sensors, based on stimulated Brillouin scattering (SBS), to the monitoring of a small-scale granular slope reconstituted in an instrumented flume and subjected to artificial rainfall until failure, and to the monitoring of a volcanic rock slope. The experiments demonstrate the sensors' ability to reveal the sudden increase in soil strain that foreruns the failure in a debris flow phenomenon, as well as to monitor the fractures in the tuff rocks. This study offers an important perspective on the use of distributed optical fiber sensors in the setting up of early warning systems for landslides in both rock and unconsolidated materials.

8.
Sensors (Basel) ; 21(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34640653

ABSTRACT

In this work, we experimentally analyzed the effect of tapering in light-diffusing optical fibers (LDFs) when employed as surface plasmon resonance (SPR)-based sensors. Although tapering is commonly adopted to enhance the performance of plasmonic optical fiber sensors, we have demonstrated that in the case of plasmonic sensors based on LDFs, the tapering produces a significant worsening of the bulk sensitivity (roughly 60% in the worst case), against a slight decrease in the full width at half maximum (FWHM) of the SPR spectra. Furthermore, we have demonstrated that these aspects become more pronounced when the taper ratio increases. Secondly, we have established that a possible alternative exists in using the tapered LDF as a modal filter after the sensible region. In such a case, we have determined that a good trade-off between the loss in sensitivity and the FWHM decrease could be reached.

9.
Sensors (Basel) ; 21(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34372287

ABSTRACT

We demonstrate the use of a graded-index perfluorinated optical fiber (GI-POF) for distributed static and dynamic strain measurements based on Rayleigh scattering. The system is based on an amplitude-based phase-sensitive Optical Time-Domain Reflectometry (ϕ-OTDR) configuration, operated at the unconventional wavelength of 850 nm. Static strain measurements have been carried out at a spatial resolution of 4 m and for a strain up to 3.5% by exploiting the increase of the backscatter Rayleigh coefficient consequent to the application of a tensile strain, while vibration/acoustic measurements have been demonstrated for a sampling frequency up to 833 Hz by exploiting the vibration-induced changes in the backscatter Rayleigh intensity time-domain traces arising from coherent interference within the pulse. The reported tests demonstrate that polymer optical fibers can be used for cost-effective multiparameter sensing.

10.
Appl Opt ; 60(13): 3579-3584, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33983286

ABSTRACT

In this paper, we demonstrate automatic vehicle detection and counting by processing data acquired using a phase-sensitive optical time-domain reflectometer (ϕ-OTDR) distributed optical fiber sensor. The acquired data are processed using the Hough transform, which detects the lines in the images formed by representing the acquired data in the space-time domain. A rough classification of the vehicles (heavy versus light vehicles) is also proposed, based on the amplitude of the vibration data along the detected lines. The method has been experimentally tested by performing ϕ-OTDR measurements along a telecommunication fiber cable running in a buried conduit along the state road SS18 (province of Salerno, Italy), opened to normal traffic. Comparison with ground-truth data, manually generated by inspecting video recordings, allowed us to estimate a vehicle detection success rate up to 73%, while heavy vehicles were fully detected.

11.
Opt Lett ; 43(10): 2280-2283, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29762572

ABSTRACT

In this Letter, we demonstrate the possibility to measure the refractive index of a liquid, using the stimulating Brillouin scattering in a 3-cm-long side-polished optical fiber. In addition, we show that by depositing a high-refractive index layer on the polished surface the sensitivity of the Brillouin frequency shift (BFS) can be increased due to a higher penetration of the evanescent field in the outer medium. Experiments show a maximum BFS change of about 11 MHz when varying the refractive index of the external medium from 1 (air) to 1.402, and a BFS sensitivity to refractive index of about 293 MHz/RIU around 1.40.

12.
Opt Express ; 24(22): 25424-25431, 2016 Oct 31.
Article in English | MEDLINE | ID: mdl-27828481

ABSTRACT

A new Brillouin optical time-domain analysis (BOTDA) technique for acquiring the full Brillouin gain spectrum (BGS) at high speed is proposed and demonstrated. The method employs a frequency swept microwave source for the generation of the probe wave, so that the entire BOTDA measurement is taken within the duration of the frequency sweep itself. By properly setting the duration of the sweep, the repetition rate of the pump pulses and the number of averages, truly distributed and dynamic measurements of the BGS are possible using a set-up at a fraction of the cost and complexity of the previously reported fast-BOTDA methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...