Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Virol ; 162(1): 299-306, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27709400

ABSTRACT

A quince tree showing severe symptoms of a previously undescribed viral disease occurring in northern Apulia (Italy) was analysed using high-throughput sequencing of small RNA libraries, leading to the identification of a new strain of apple green crinkle associated virus (isolate AGCaV-CYD) showing peculiar traits. RT-PCR with specific primers detected AGCaV-CYD in consistent association with symptoms in the surveyed orchards. Molecular characterization of the reconstructed genome, together with phylogenetic analysis, showed it to be closely related to an AGCaV strain causing green crinkle disease in apple (AGCaV-AUR) and divergent from the type strain of apple stem pitting virus (ASPV-PA66).


Subject(s)
Flexiviridae/genetics , Flexiviridae/isolation & purification , Genome, Viral , Plant Diseases/virology , Rosaceae/virology , Cluster Analysis , Flexiviridae/classification , High-Throughput Nucleotide Sequencing , Italy , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology
2.
Front Plant Sci ; 7: 1290, 2016.
Article in English | MEDLINE | ID: mdl-27625664

ABSTRACT

Sharka, caused by Plum Pox Virus (PPV), is by far the most important infectious disease of peach [P. persica (L.) Batsch] and other Prunus species. The progressive spread of the virus in many important growing areas throughout Europe poses serious issues to the economic sustainability of stone fruit crops, peach in particular. The adoption of internationally agreed-upon rules for diagnostic tests, strain-specific monitoring schemes and spatial-temporal modeling of virus spread, are all essential for a more effective sharka containment. The EU regulations on nursery activity should be modified based on the zone delimitation of PPV presence, limiting open-field production of propagation materials only to virus-free areas. Increasing the efficiency of preventive measures should be augmented by the short-term development of resistant cultivars. Putative sources of resistance/tolerance have been recently identified in peach germplasm, although the majority of novel resistant sources to PPV-M have been found in almond. However, the complexity of introgression from related-species imposes the search for alternative strategies. The use of genetic engineering, particularly RNA interference (RNAi)-based approaches, appears as one of the most promising perspectives to introduce a durable resistance to PPV in peach germplasm, notwithstanding the well-known difficulties of in vitro plant regeneration in this species. In this regard, rootstock transformation to induce RNAi-mediated systemic resistance would avoid the transformation of numerous commercial cultivars, and may alleviate consumer resistance to the use of GM plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...