Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Steroid Biochem Mol Biol ; 232: 106361, 2023 09.
Article in English | MEDLINE | ID: mdl-37419395

ABSTRACT

Over the past decades, a remarkable number of scientific studies supported the correlation between an adequate dietary intake of phytosterols (PS) and the reduced risk of cardiovascular diseases. PS are known to inhibit the intestinal absorption of cholesterol, thus promoting the reduction of the low-density lipoproteins (LDL) amount in the bloodstream. Despite the fact that a non-negligible atherogenicity was recognized to PS, thus requiring a careful risk-benefits assessment for plant sterol supplementation, the potential role of PS as cholesterol-lowering agents has been contributing to the spreading awareness of the health benefits associated with the consumption of plant-based foods. In recent years, this has been fueling the market of innovative vegetable products, such as microgreens. Surprisingly, the recent literature concerning microgreens exhibited the lack of studies focusing on the characterization of PS. To fill this gap, a validated analytical method based on the hyphenation of gas chromatography and tandem mass spectrometry is proposed here for the quantitative analysis of eight phytosterols, namely ß-sitosterol, campesterol, stigmasterol, brassicasterol, isofucosterol, and cholesterol, lathosterol and lanosterol. The method was exploited for the characterization of the PS content in 10 microgreen crops, i.e., chia, flax, soybean, sunflower, rapeseed, garden cress, catalogna chicory, endive, kale and broccoli raab. Finally, these results were compared to the PS content of mature forms of kale and broccoli raab. A remarkable amount of PS was detected in chia, flax, rapeseed, garden cress, kale, and broccoli raab microgreens. 100 g (wet weight) of these microgreen crops were found to contain from 20 to 30 mg of the investigated PS. Interestingly, in the case of kale and broccoli raab microgreens, the overall PS content was higher than the one measured in the edible parts of the corresponding mature forms. Additionally, a symmetric change of the PS inner profile was observed between the two growth stages of the latter two crops. Here, the overall decrease of the PS sterol content in the mature forms was associated with the increase of the relative amount of ß-sitosterol and campesterol at the expense of minor PS species, such as brassicasterol.


Subject(s)
Phytosterols , Sterols , Tandem Mass Spectrometry , Gas Chromatography-Mass Spectrometry , Phytosterols/chemistry , Cholesterol , Sitosterols
2.
J Agric Food Chem ; 68(44): 12310-12325, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33103891

ABSTRACT

The study of negative effects potentially exerted by the exposure to oxygen and/or light and, thus, also by the type of container on the quality of extra virgin olive oil (EVOO) during its prolonged storage requires an appropriate choice of analytical methods and components to be monitored. Here, reverse-phase liquid chromatography coupled to high-resolution/accuracy Fourier transform mass spectrometry with electrospray ionization was exploited to study oxidative/hydrolytic degradation processes occurring on the important bioactive components of EVOO known as secoiridoids, i.e., oleuropein and ligstroside aglycones, oleacin, and oleocanthal, during storage up to 6 months under controlled conditions. Specifically, isomeric oxidative byproducts resulting from the transformation of a carbonylic group of the original secoiridoids into a carboxylic group and compounds resulting from hydrolysis of the ester linkage of secoiridoids, i.e., elenolic and decarboxymethyl elenolic acids and tyrosol and 3-hydroxytyrosol, were monitored, along with their precursors. Data obtained from EVOO storage at room temperature in glass bottles with/without exposure to light and/or oxygen indicated that, although it was more relevant if a periodical exposure to oxygen was performed, a non-negligible oxidative degradation occurred on secoiridoids also when nitrogen was used to saturate the container headspace. In a parallel experiment, the effects of storage of the same EVOO (250 mL) for up to 6 months in containers manufactured with different materials/shapes were considered. In particular, a square dark glass bottle, a stainless-steel can, and a ceramic jar, typically used for EVOO commercialization, and a clear polyethylene terephthalate bottle, purposely chosen to prompt secoiridoid degradation through exposure to light and oxygen, were compared. Dark glass was found to provide the best combined protection of major secoiridoids from oxidative and hydrolytic degradation, yet the lowest levels of oxidized byproducts were observed when the stainless-steel can was used.


Subject(s)
Iridoids/chemistry , Olive Oil/chemistry , Chromatography, High Pressure Liquid , Food Storage , Fourier Analysis , Hydrolysis , Mass Spectrometry , Molecular Structure , Oxidation-Reduction
3.
Electrophoresis ; 41(20): 1760-1767, 2020 10.
Article in English | MEDLINE | ID: mdl-32297342

ABSTRACT

Spirulina microalga (Arthrospira platensis) is an interesting phototrophic organism because of its high content of nutrients including proteins, lipids, essential amino acids, antioxidants, vitamins, polysaccharides, and minerals. Hydrophilic interaction liquid chromatography (HILIC) coupled to linear ion trap (LIT) and Orbitrap Fourier transform mass spectrometry (FTMS) via ESI was employed for the separation and characterization of lipid species in A. platensis. Inositolphosphoceramides (IPC) are minor but important constituents of spirulina; their investigation was accomplished by HILIC-ESI-MS including collision-induced dissociation (MS2 , MS3 ) of deprotonated molecules in the LIT analyzer and a schematic fragmentation pattern is described. All four commercial spirulina samples revealed the occurrence of the same IPC species at m/z 796.6 (d18:0/16:0;1), 810.6 (d18:0/17:0;1), 824.6 (d18:0/18:0;1), and 826.6 (d18:0/17:0;2) but in diverse relative abundance. This study sets the stage for future investigations on IPC in other algae and microalgae.


Subject(s)
Glycosphingolipids/analysis , Microalgae/chemistry , Spirulina/chemistry , Chromatography, High Pressure Liquid , Glycosphingolipids/chemistry , Glycosphingolipids/isolation & purification , Hydrophobic and Hydrophilic Interactions , Spectrometry, Mass, Electrospray Ionization
4.
Talanta ; 215: 120882, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32312431

ABSTRACT

Proteomic approaches based on mass spectrometry have become increasingly popular for protein binder's identification in works of art. The identification of the binder employed may offer key information on paintings and other polychrome objects and contribute to assess their historical and technical context, also providing useful hints for a proper restoration and/or conservation treatment. Usually, the protocols employed to this purpose are invasive and at least micro sampling is required. Here, we present a simple transferable method for a quasi-non-invasive analysis of binders in artworks based on the use of a very small poly (2-hydroxyethyl methacrylate)/poly (vinylpyrrolidone) hydrogel (3 mm × 3 mm) previously loaded with trypsin for the in-situ digestion of proteins and applied onto the objects' surface. Upon extraction of digested peptides from the hydrogel, they were examined by MALDI-TOF-MS and/or LC-ESI-MS/MS. The method was validated on fresh and aged model pictorial layers; optical microscope images, and spectrophotocolorimetry confirmed that neither damage nor color alteration of the painting layer occurred, and no hydrogel residue was left. X-ray photoelectron spectroscopy carried out on paint models confirmed that the treatment with trypsin-loaded gels did not modify the pigment composition, even on aged samples. The protocol was successfully applied to a painting on wood mockup aged thirty years, a statue dated XV century exposed in San Lorenzo church (Bisceglie, Bari, Apulia), and a liturgical scroll Benedictio ignis et fontis (Benedizionale) of the Museo Diocesano of Bari dated eleventh century; in all these objects the proteinaceous binder was readily and successfully identified.


Subject(s)
Paint/analysis , Proteins/chemistry , Mass Spectrometry , Particle Size , Proteomics , Surface Properties
5.
Rapid Commun Mass Spectrom ; 30(14): 1680-1686, 2016 07 30.
Article in English | MEDLINE | ID: mdl-28328038

ABSTRACT

RATIONALE: Here hardly ionizable and low molecular weight compounds are detected in negative ion mode by using novel superbasic proton sponges based on 1,8-bisphosphazenylnaphthalene (PN) as MALDI matrices. Among the selected proton sponges, 1,8-bis(trispyrrolidinophosphazenyl)naphthalene (TPPN) has shown the best behaviour as matrix since it allows the direct detection of intact cholesterol without derivatization also in real challenging samples. METHODS: Very weakly acidic compounds such as sterols, steroids, fatty alcohols and saccharides were detected in reflectron negative ion mode by a MALDI TOF/TOF system equipped with a neodymium-doped yttrium lithium fluoride (Nd:YLF) laser (345 nm) with typical mass accuracy of 10 ppm. MS/MS experiments were performed by using ambient air as the collision gas. RESULTS: Contrary to traditional MALDI matrices, superbasic proton sponges allowed the easy deprotonation of an alcohol functional group without a previous chemical derivatization step. Experimental evidence indicates that analyte deprotonation is achieved in the condensed phase, i.e. PN superbasic proton sponges operate according to a recently proposed model named matrix assisted ionization/laser desorption (MAILD). A detection limit of 3 pmol/spot of cholesterol (model compound) with a signal-to-noise ratio ≥ 10 was typically obtained. CONCLUSIONS: For the first time, the usefulness of novel superbasic proton sponges is demonstrated for MALDI detection of hardly ionizable compounds such as sterols, steroids, fatty alcohols and saccharides. The leading candidate TPPN has been successfully applied for negative ion MAILD-MS analysis of cholesterol, fatty acids and phospholipids in egg yolk and brain tissue extracts. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Protons , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Molecular Weight , Signal-To-Noise Ratio , Tandem Mass Spectrometry
6.
J Chromatogr A ; 1422: 194-205, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26508677

ABSTRACT

A mixture of native and oxidized phospholipids (PLs), generated by the soybean lipoxygenase type V-catalyzed partial oxidation of a lipid extract obtained from human platelets, was analyzed by Hydrophilic Interaction Liquid Chromatography-ElectroSpray Ionization-Tandem Mass Spectrometry (HILIC-ESI-MS/MS). The complexity of the resulting mixture was remarkable, considering that the starting lipid extract, containing (as demonstrated in a previous study) about 130 native PLs, was enriched with enzymatically generated hydroperoxylated derivatives and chemically generated hydroxylated forms of PLs bearing polyunsaturated side chains. Nonetheless, the described analytical approach proved to be very powerful; indeed, focusing on phosphatidylcolines (PCs), the most abundant PL class in human platelets, about fifty different native/oxidized species could be identified in a single HILIC-ESI-MS/MS run. Low-energy collision induced dissociation tandem MS (CID-MS/MS) experiments on chromatographically separated species showed single neutral losses of H2O2 and H2O to be typical fragmentation pathways of hydroperoxylated PCs, whereas a single H2O loss was observed for hydroxylated ones. Moreover, diagnostic losses of n-hexanal or n-pentanol were exploited to recognize PCs hydroperoxylated on the last but five carbon atom of a É·-6 polyunsaturated side chain. Despite the low resolution of the 3D ion trap mass analyzer used, the described HILIC-ESI-MS/MS approach appears very promising for the identification of oxidized lipids in oxidatively stressed complex biological systems.


Subject(s)
Phospholipids/chemistry , Aldehydes/chemistry , Blood Platelets/chemistry , Chromatography, Liquid/methods , Humans , Hydrogen Peroxide/chemistry , Hydrophobic and Hydrophilic Interactions , Lipoxygenase/chemistry , Oxidation-Reduction , Pentanols/chemistry , Phosphatidylcholines/blood , Phosphatidylcholines/chemistry , Phospholipids/blood , Glycine max/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
7.
Anal Chem ; 85(13): 6405-13, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23786572

ABSTRACT

The phospholipidome of blood microparticles (MPs) obtained from platelet-rich plasma of healthy individuals was characterized by hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization tandem mass spectrometry (ESI-MS/MS). The HILIC separation, performed on a silica stationary phase using an acetonitrile/methanol gradient, enabled the separation of several phospholipids (PL) classes, viz., phosphatidyl-cholines (PCs), -ethanolamines (PEs), -serines (PSs), -inositoles (PIs), sphyngomielins (SMs), and lyso forms of PCs and PEs. Structural characterization of species belonging to each class was performed by MS/MS measurements, in either positive or negative ion mode. The set of 131 phospholipids (including regioisomers) here identified represents the most comprehensive phospholipidomic characterization reported for human MPs. Although the phospholipidome composition of MPs and platelets, collected from the same donors, was found to be qualitatively the same, quantitative differences were evidenced for lyso-PCs, which appear to be significantly more abundant in MPs.


Subject(s)
Cell-Derived Microparticles/chemistry , Phospholipids/blood , Spectrometry, Mass, Electrospray Ionization/methods , Adult , Chromatography, Liquid/methods , Female , Humans , Male , Middle Aged , Phospholipids/analysis
8.
Rapid Commun Mass Spectrom ; 18(12): 1341-4, 2004.
Article in English | MEDLINE | ID: mdl-15174189

ABSTRACT

A rapid, simple and selective method involving direct separation by gas chromatography (GC) with electron ionization mass spectrometry (EI-MS) was employed to determine some N-acylhomoserine lactones (AHLs). Using GC/EI-MS, simultaneous separation and characterization of AHLs were possible without prior derivatization. Informative fragmentation patterns were obtained to identify the structures of N-acyl chains of AHLs. Electron ionization resulted in a common fragmentation pattern with the most abundant ion at m/z 143 and other minor peaks at m/z 71, 57, and 43. The presence of AHLs in extracts of Burkholderia cepacia strains was achieved in selected ion monitoring mode by using the prominent fragment at m/z 143.


Subject(s)
4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/analysis , Gas Chromatography-Mass Spectrometry/methods , Homoserine/analysis , 4-Butyrolactone/chemistry , Acylation , Burkholderia cepacia/chemistry , Homoserine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...