Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(3)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36986875

ABSTRACT

The aim of the study was to develop a sustained-release varnish (SRV) containing mometasone furoate (MMF) for sinonasal stents (SNS) to reduce mucosa inflammation in the sinonasal cavity. The SNS' segments coated with SRV-MMF or an SRV-placebo were incubated daily in a fresh DMEM at 37 °C for 20 days. The immunosuppressive activity of the collected DMEM supernatants was tested on the ability of mouse RAW 264.7 macrophages to secrete the cytokines' tumor necrosis factor α (TNFα) and interleukin (IL)-10 and IL-6 in response to lipopolysaccharide (LPS). The cytokine levels were determined by respective Enzyme-Linked Immunosorbent Assays (ELISAs). We found that the daily amount of MMF released from the coated SNS was sufficient to significantly inhibit LPS-induced IL-6 and IL-10 secretion from the macrophages up to days 14 and 17, respectively. SRV-MMF had, however, only a mild inhibitory effect on LPS-induced TNFα secretion as compared to the SRV-placebo-coated SNS. In conclusion, the coating of SNS with SRV-MMF provides a sustained delivery of MMF for at least 2 weeks, maintaining a level sufficient for inhibiting pro-inflammatory cytokine release. This technological platform is, therefore, expected to provide anti-inflammatory benefits during the postoperative healing period and may play a significant role in the future treatment of chronic rhinosinusitis.

2.
Pharmaceutics ; 13(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34834197

ABSTRACT

The aim of the study was to develop a sustained-release varnish (SRV) containing chlorhexidine (CHX) for sinonasal stents (SNS) to reduce bacterial growth and biofilm formation in the sinonasal cavity. Segments of SNS were coated with SRV-CHX or SRV-placebo and exposed daily to bacterial cultures of Staphylococcus aureus subsp. aureus ATCC 25923 or Pseudomonas aeruginosa ATCC HER-1018 (PAO1). Anti-bacterial effects were assessed by disc diffusion assay and planktonic-based activity assay. Biofilm formation on the coated stents was visualized by confocal laser scanning microscopy (CLSM) and high-resolution scanning electron microscopy (HR-SEM). The metabolic activity of the biofilms was determined using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) method. Disc diffusion assay showed that SRV-CHX-coated SNS segments inhibited bacterial growth of S. aureussubsp. aureus ATCC 25923 for 26 days and P. aeruginosa ATCC HER-1018 for 19 days. CHX was released from coated SNS segments in a pH 6 medium up to 30 days, resulting in growth inhibition of S. aureussubsp. aureus ATCC 25923 for 22 days and P. aeruginosa ATCC HER-1018 for 24 days. The MTT assay showed a reduction of biofilm growth on the coated SNS by 69% for S. aureussubsp. aureus ATCC 25923 and 40% for P. aeruginosa ATCC HER-1018 compared to the placebo stent after repeated exposure to planktonic growing bacteria. CLSM and HR-SEM showed a significant reduction of biofilm formation on the SRV-CHX-coated SNS segments. Coating of SNS with SRV-CHX maintains a sustained delivery of CHX, providing an inhibitory effect on the bacterial growth of S. aureussubsp. aureus ATCC 25923 and P. aeruginosa ATCC HER-1018 for approximately 3 weeks.

SELECTION OF CITATIONS
SEARCH DETAIL
...