Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 112(7): 1133-1149.e6, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38290518

ABSTRACT

Dysfunction in sodium channels and their ankyrin scaffolding partners have both been implicated in neurodevelopmental disorders, including autism spectrum disorder (ASD). In particular, the genes SCN2A, which encodes the sodium channel NaV1.2, and ANK2, which encodes ankyrin-B, have strong ASD association. Recent studies indicate that ASD-associated haploinsufficiency in Scn2a impairs dendritic excitability and synaptic function in neocortical pyramidal cells, but how NaV1.2 is anchored within dendritic regions is unknown. Here, we show that ankyrin-B is essential for scaffolding NaV1.2 to the dendritic membrane of mouse neocortical neurons and that haploinsufficiency of Ank2 phenocopies intrinsic dendritic excitability and synaptic deficits observed in Scn2a+/- conditions. These results establish a direct, convergent link between two major ASD risk genes and reinforce an emerging framework suggesting that neocortical pyramidal cell dendritic dysfunction can contribute to neurodevelopmental disorder pathophysiology.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Neocortex , Animals , Mice , Ankyrins/genetics , Ankyrins/metabolism , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autistic Disorder/metabolism , Dendrites/physiology , NAV1.2 Voltage-Gated Sodium Channel/genetics , Neocortex/metabolism , Pyramidal Cells/physiology
2.
Neuropharmacology ; 242: 109772, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37898332

ABSTRACT

In rats, eating obesogenic diets increases calcium-permeable AMPA receptor (CP-AMPAR) transmission in the nucleus accumbens (NAc) core, and enhances food-motivated behavior. Interestingly, these diet-induced alterations in NAc transmission are pronounced and sustained in obesity-prone (OP) male rats and absent in obesity-resistant (OR) populations. However, effects of diet manipulation on food motivation, and the mechanisms underlying this NAc plasticity in OPs is unknown. Using male selectively-bred OP and OR rats, we assessed food-motivated behavior following ad lib access to chow (CH), junk-food (JF), or 10d of JF followed by a return to chow diet (JF-Dep). Motivation for food was greater in OP than OR rats, as expected. However, JF-Dep only produced enhancements in food-seeking in OP groups, while continuous JF access reduced food-seeking in both OPs and ORs. Additionally, optogenetic, chemogenetic, and pharmacological approaches were used to examine NAc CP-AMPAR recruitment following diet manipulation and ex vivo treatment of brain slices. Reducing excitatory transmission in the NAc was sufficient to recruit CP-AMPARs to synapses in OPs, but not ORs. In OPs, JF-induced increases in CP-AMPARs occurred in mPFC-, but not BLA-to-NAc inputs. Together results show that diet differentially affects behavioral and neural plasticity in obesity susceptible populations. We also identify conditions for acute recruitment of NAc CP-AMPARs; these results suggest that synaptic scaling mechanisms contribute to NAc CP-AMPAR recruitment. Overall, this work helps elucidate how diet interacts with obesity susceptibility to influence food-motivated behavior and extends our fundamental understanding of NAc CP-AMPAR recruitment.


Subject(s)
Calcium , Receptors, AMPA , Rats , Male , Animals , Receptors, AMPA/metabolism , Calcium/metabolism , Rats, Sprague-Dawley , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Glutamic Acid/pharmacology , Nucleus Accumbens , Obesity
3.
Biol Sex Differ ; 14(1): 41, 2023 06 24.
Article in English | MEDLINE | ID: mdl-37355656

ABSTRACT

BACKGROUND: The development and persistence of addiction is mediated in part by drug-induced alterations in nucleus accumbens (NAc) function. AMPA-type glutamate receptors (AMPARs) provide the main source of excitatory drive to the NAc and enhancements in transmission of calcium-permeable AMPARs (CP-AMPARs) mediate increased cue-triggered drug-seeking following prolonged withdrawal. Cocaine treatment regimens that result in psychomotor sensitization enhance subsequent drug-seeking and drug-taking behaviors. Furthermore, cocaine-induced locomotor sensitization followed by 14 days of withdrawal results in an increase in glutamatergic synaptic transmission. However, very few studies have examined cocaine-induced alterations in synaptic transmission of females or potential effects of experimenter-administered cocaine on NAc CP-AMPAR-mediated transmission in either sex. METHODS: Male and female rats were given repeated systemic cocaine injections to induce psychomotor sensitization (15 mg/kg, i.p. 1 injection/day, 8 days). Controls received repeated saline (1 mL/kg, i.p). After 14-16 days of withdrawal brain slices were prepared and whole-cell patch-clamp approaches in the NAc core were used to measure spontaneous excitatory post-synaptic currents (sEPSC), paired pulse ratio, and CP-AMPAR transmission. Additional female rats from this same cohort were also given a challenge injection of cocaine at withdrawal day 14 to assess the expression of sensitization. RESULTS: Repeated cocaine produced psychomotor sensitization in both sexes. In males this was accompanied by an increase in sEPSC frequency, but not amplitude, and there was no effect on the paired pulse ratio. Males treated with cocaine and saline had similar sensitivity to Naspm. In contrast, in females there were no significant differences between cocaine and saline groups on any measure, despite females showing robust psychomotor sensitization both during the induction and expression phase. CONCLUSIONS: Overall, these data reveal striking sex differences in cocaine-induced NAc glutamate plasticity that accompany the induction of psychomotor sensitization. This suggests that the neural adaptations that contribute to sensitization vary by sex.


Females are more vulnerable to substance use disorder than males. However, preclinical studies in females are lacking, particularly in regard to the function of neural regions that mediate reward and motivation such as the nucleus accumbens (NAc). Cocaine-induced changes in excitatory transmission within the NAc play important roles in cocaine-seeking and addiction, but are under-studied in females. Here we found that cocaine treatment enhances NAc excitatory transmission in males, but has no effects on this aspect of NAc function in females. The neural processes underlying addiction may vary according to gonadal sex.


Subject(s)
Cocaine , Female , Rats , Male , Animals , Cocaine/pharmacology , Cocaine/metabolism , Nucleus Accumbens , Rats, Sprague-Dawley , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Synaptic Transmission , Receptors, AMPA/metabolism
4.
bioRxiv ; 2023 May 17.
Article in English | MEDLINE | ID: mdl-37292760

ABSTRACT

In rats, eating obesogenic diets increase calcium-permeable AMPA receptor (CP-AMPAR) transmission in the nucleus accumbens (NAc) core, and enhances food-motivated behavior. Interestingly these diet-induced alterations in NAc transmission are pronounced in obesity-prone (OP) rats and absent in obesity-resistant (OR) populations. However, effects of diet manipulation on food motivation, and the mechanisms underlying NAc plasticity in OPs is unknown. Using male selectively-bred OP and OR rats, we assessed food-motivated behavior following ad lib access to chow (CH), junk-food (JF), or 10d of JF followed by a return to chow diet (JF-Dep). Behavioral tests included conditioned reinforcement, instrumental responding, and free consumption. Additionally, optogenetic, chemogenetic, and pharmacological approaches were used to examine NAc CP-AMPAR recruitment following diet manipulation and ex vivo treatment of brain slices. Motivation for food was greater in OP than OR rats, as expected. However, JF-Dep only produced enhancements in food-seeking in OP groups, while continuous JF access reduced food-seeking in both OPs and ORs. Reducing excitatory transmission in the NAc was sufficient to recruit CP-AMPARs to synapses in OPs, but not ORs. In OPs, JF-induced increases in CP-AMPARs occurred in mPFC-, but not BLA-to-NAc inputs. Diet differentially affects behavioral and neural plasticity in obesity susceptible populations. We also identify conditions for acute recruitment of NAc CP-AMPARs; these results suggest that synaptic scaling mechanisms contribute to NAc CP-AMPAR recruitment. Overall, this work improves our understanding of how sugary, fatty food consumption interacts with obesity susceptibility to influence food-motivated behavior. It also extends our fundamental understanding of NAc CP-AMPAR recruitment; this has important implications for motivation in the context of obesity as well as drug addiction.

5.
Obesity (Silver Spring) ; 31(2): 434-445, 2023 02.
Article in English | MEDLINE | ID: mdl-36575127

ABSTRACT

OBJECTIVE: The nucleus accumbens (NAc) plays critical roles in eating and food seeking in rodents and humans. Diets high in fats and sugars ("junk food") produce persistent increases in NAc function in male obesity-prone rats. This study examines effects of junk food and junk food deprivation on NAc core medium spiny neuron (MSN) excitability and glutamate transmission in females. METHODS: Obesity-prone female rats were given access to ad libitum junk food for 10 days, and recordings were made from MSNs in the NAc core immediately or after a short (27-72 hours) or long (14-16 days) junk food deprivation period in which rats were returned to ad libitum standard chow. Controls remained on chow throughout. Whole-cell slice electrophysiology was used to examine MSN intrinsic membrane and firing properties and glutamatergic transmission. RESULTS: The study found that intrinsic excitability was reduced, whereas glutamatergic transmission was enhanced, after the short, but not long, junk food deprivation period. A brief junk food deprivation period was necessary for increases in NAc calcium-permeable-AMPA receptor transmission and spontaneous excitatory postsynaptic current (sEPSC) frequency, but not for increases in sEPSC amplitude. CONCLUSIONS: This study reveals that females are protected from long-lasting effects of sugary fatty foods on MSN neuronal function and provides evidence for sex-specific effects on plasticity in brain centers that influence food-seeking and feeding behavior.


Subject(s)
Nucleus Accumbens , Obesity , Humans , Rats , Male , Female , Animals , Diet , Feeding Behavior , Food
SELECTION OF CITATIONS
SEARCH DETAIL
...