Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Nucleic Acids Res ; 52(13): 7761-7779, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38850156

ABSTRACT

Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1) ORF2-encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 (Alu-permissive) strains, but not in HeLa-JVM or HeLa-H1 (Alu-nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA-derived SINEs and tRNA-derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR-Alu (SVA) element, and an L1 ORF1-containing mRNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu-permissive and Alu-nonpermissive HeLa strains, suggesting that 7SL- and tRNA-derived SINEs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1-containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu-permissive and Alu-nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu-nonpermissive HeLa strains.


Subject(s)
Alu Elements , Long Interspersed Nucleotide Elements , Humans , HeLa Cells , Alu Elements/genetics , Long Interspersed Nucleotide Elements/genetics , Short Interspersed Nucleotide Elements/genetics , Animals , Retroelements/genetics , RNA/genetics , RNA/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Zebrafish/genetics
2.
bioRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38746229

ABSTRACT

Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1 or L1) ORF2 -encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 ( Alu -permissive) strains, but not in HeLa-JVM or HeLa-H1 ( Alu -nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA -derived SINEs and tRNA -derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR - Alu ( SVA ) element, and an L1 ORF1 -containing messenger RNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu -permissive and Alu -nonpermissive HeLa strains, suggesting that 7SL - and tRNA -derived SINE RNAs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1 -containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu -permissive and Alu -nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu -nonpermissive HeLa strains.

3.
Curr Issues Mol Biol ; 45(8): 6903-6915, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37623254

ABSTRACT

In recent years, cell culture has become an important tool not only in research laboratories, but also in diagnostic and biotechnological development laboratories. Mycoplasma contamination is present in up to 35% of cell cultures used in research and in cell therapies. This fact represents a significant problem since such contamination can cause disastrous effects on eukaryotic cells by altering their cellular parameters, which, in turn, can lead to unreliable experimental results. For this reason, it is mandatory to carry out continuous testing for the presence of Mycoplasma in cell culture and the development of appropriate methodologies for this purpose. An ideal detection methodology should be fast, sensitive, and reliable. In this study, we propose an alternative detection method based on real-time PCR in conjunction with a novel combination of primers and probes that have been improved to increase their efficiency. The new PCR method demonstrates 100% sensitivity and specificity results in the detection of common Mycoplasma species that contaminate cell cultures. Whilst 11 of 45 tested supernatants were positive for Mycoplasma (24.4%) using the new PCR method (corresponding to 5 of the 14 lines tested (35.71%)), only 10 of 45 supernatants showed positive results with the commercial Venor®GeM qEP and Plasmotest® kit. In addition, the new PCR method exhibits a high capacity to detect less-frequent Mycoplasma species, such as those related to the M. mycoides cluster. The use of an alternative Mycoplasma-detection method in cell culture labs can guarantee the detection of Mycoplasma contamination, especially in cases when dubious results are recorded.

4.
Cell Death Dis ; 14(6): 357, 2023 06 10.
Article in English | MEDLINE | ID: mdl-37301844

ABSTRACT

Pediatric Acute Myeloid Leukemia (AML) is a rare and heterogeneous disease characterized by a high prevalence of gene fusions as driver mutations. Despite the improvement of survival in the last years, about 50% of patients still experience a relapse. It is not possible to improve prognosis only with further intensification of chemotherapy, as come with a severe cost to the health of patients, often resulting in treatment-related death or long-term sequels. To design more effective and less toxic therapies we need a better understanding of pediatric AML biology. The NUP98-KDM5A chimeric protein is exclusively found in a particular subgroup of young pediatric AML patients with complex karyotypes and poor prognosis. In this study, we investigated the impact of NUP98-KDM5A expression on cellular processes in human Pluripotent Stem Cell models and a patient-derived cell line. We found that NUP98-KDM5A generates genomic instability through two complementary mechanisms that involve accumulation of DNA damage and direct interference of RAE1 activity during mitosis. Overall, our data support that NUP98-KDM5A promotes genomic instability and likely contributes to malignant transformation.


Subject(s)
Leukemia, Myeloid, Acute , Oncogene Proteins, Fusion , Humans , Child , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Oncogene Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Genomic Instability , Retinoblastoma-Binding Protein 2/metabolism
5.
Cancer Lett ; 429: 78-88, 2018 08 10.
Article in English | MEDLINE | ID: mdl-29733965

ABSTRACT

Cancer stem cells (CSCs) are responsible for tumor initiation, metastasis and cancer recurrence, however the involvement of microenvironment is crucial. Here, we have analyzed how human mesenchymal stem cells (MSCs)-derived conditioned medium (CM) affect colon and melanoma CSCs enrichment and maintenance. Our results strongly suggest that the secretome of CM-MSCs selects and maintains subpopulations with high expression of CSCs markers and ALDH1 activity, low proliferation rates with G1 phase arrest, and notably retain in vivo these properties. Cytogenetic analyses indicated that CM-cultured cells contain alterations in chromosome 17 (17q25). Subsequent SKY-FISH analyses suggested that genes located in 17q25 might be involved in stem-cell maintenance. The characterization of secreted proteins present in CM-MSCs revealed that four cytokines and seven growth factors are directly linked to the CSCs enrichment reported in this study. Further analyses revealed that the combination of just IL6 and HGF is enough to provide cancer cells with better stemness properties. In conclusion, this study demonstrates how specific chromosomal alterations present in CSCs subpopulations might represent an advantage for their in vitro maintenance and in vivo stemness properties.


Subject(s)
Culture Media, Conditioned/pharmacology , Mesenchymal Stem Cells/drug effects , Neoplastic Stem Cells/drug effects , Tumor Microenvironment/drug effects , Aldehyde Dehydrogenase 1 Family , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Chromosomes, Human, Pair 17/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Culture Media, Conditioned/metabolism , Cytokines/genetics , Cytokines/metabolism , HCT116 Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Melanoma/metabolism , Melanoma/pathology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism , Tumor Microenvironment/genetics
6.
J Cell Mol Med ; 16(12): 3009-21, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22947336

ABSTRACT

To further contribute to the understanding of multiple myeloma, we have focused our research interests on the mechanisms by which tumour plasma cells have a higher survival rate than normal plasma cells. In this article, we study the expression profile of genes involved in the regulation and protection of telomere length, telomerase activity and apoptosis in samples from patients with monoclonal gammopathy of undetermined significance, smouldering multiple myeloma, multiple myeloma (MM) and plasma cell leukaemia (PCL), as well as several human myeloma cell lines (HMCLs). Using conventional cytogenetic and fluorescence in situ hybridization studies, we identified a high number of telomeric associations (TAs). Moreover, telomere length measurements by terminal restriction fragment (TRF) assay showed a shorter mean TRF peak value, with a consistent correlation with the number of TAs. Using gene expression arrays and quantitative PCR we identified the hTERT gene together with 16 other genes directly involved in telomere length maintenance: HSPA9, KRAS, RB1, members of the Small nucleolar ribonucleoproteins family, A/B subfamily of ubiquitously expressed heterogeneous nuclear ribonucleoproteins, and 14-3-3 family. The expression levels of these genes were even higher than those in human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), which have unlimited proliferation capacity. In conclusion, the gene signature suggests that MM tumour cells are able to maintain stable short telomere lengths without exceeding the short critical length, allowing cell divisions to continue. We propose that this could be a mechanism contributing to MM tumour cells expansion in the bone marrow (BM).


Subject(s)
Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Telomere Homeostasis/genetics , Telomere/genetics , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cell Survival , Chromosomal Instability , Embryonic Stem Cells/metabolism , Female , Gene Expression Profiling , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Leukemia, Plasma Cell/genetics , Leukemia, Plasma Cell/metabolism , Male , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Monoclonal Gammopathy of Undetermined Significance/genetics , Monoclonal Gammopathy of Undetermined Significance/metabolism , Plasma Cells/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins p21(ras) , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Ribonucleoproteins, Small Nucleolar/genetics , Ribonucleoproteins, Small Nucleolar/metabolism , Telomerase/genetics , Telomerase/metabolism , Telomere/metabolism , Transcriptome , ras Proteins/genetics , ras Proteins/metabolism
7.
Cancer Res ; 70(10): 4185-94, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20442289

ABSTRACT

Sarcomas have been modeled in mice by the expression of specific fusion genes in mesenchymal stem cells (MSC), supporting the concept that MSCs might be the target initiating cell in sarcoma. In this study, we evaluated the potential oncogenic effects of p53 and/or retinoblastoma (Rb) deficiency in MSC transformation and sarcomagenesis. We derived wild-type, p53(-/-), Rb(-/-), and p53(-/-)Rb(-/-) MSC cultures and fully characterized their in vitro growth properties and in vivo tumorigenesis capabilities. In contrast with wild-type MSCs, Rb(-/-), p53(-/-), and p53(-/-)Rb(-/-) MSCs underwent in vitro transformation and showed severe alterations in culture homeostasis. More importantly, p53(-/-) and p53(-/-)Rb(-/-) MSCs, but not Rb(-/-) MSCs, were capable of tumor development in vivo after injection into immunodeficient mice. p53(-/-) or p53(-/-)Rb(-/-) MSCs originated leiomyosarcoma-like tumors, linking this type of smooth muscle sarcoma to p53 deficiency in fat tissue-derived MSCs. Sca1+ and Sca1 low/- cell populations isolated from ex vivo-established, transformed MSC lines from p53(-/-)Rb(-/-) tumors showed identical sarcomagenesis potential, with 100% tumor penetrance and identical latency, tumor weight, and histologic profile. Our findings define the differential roles of p53 and Rb in MSC transformation and offer proof-of-principle that MSCs could provide useful tools to dissect the sarcoma pathogenesis.


Subject(s)
Cell Transformation, Neoplastic , Leiomyosarcoma/pathology , Mesenchymal Stem Cells/pathology , Retinoblastoma Protein/physiology , Sarcoma, Experimental/pathology , Tumor Suppressor Protein p53/physiology , Animals , Blotting, Western , Cell Adhesion , Cell Differentiation , Cell Movement , Cell Proliferation , Fluorescent Antibody Technique , In Vitro Techniques , Integrases/metabolism , Leiomyosarcoma/metabolism , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sarcoma, Experimental/metabolism
8.
J Exp Med ; 206(13): 3131-41, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-19995953

ABSTRACT

MLL-AF4 fusion is a hallmark genetic abnormality in infant B-acute lymphoblastic leukemia (B-ALL) known to arise in utero. The cellular origin of leukemic fusion genes during human development is difficult to ascertain. The bone marrow (BM) microenvironment plays an important role in the pathogenesis of several hematological malignances. BM mesenchymal stem cells (BM-MSC) from 38 children diagnosed with cytogenetically different acute leukemias were screened for leukemic fusion genes. Fusion genes were absent in BM-MSCs of childhood leukemias carrying TEL-AML1, BCR-ABL, AML1-ETO, MLL-AF9, MLL-AF10, MLL-ENL or hyperdiploidy. However, MLL-AF4 was detected and expressed in BM-MSCs from all cases of MLL-AF4(+) B-ALL. Unlike leukemic blasts, MLL-AF4(+) BM-MSCs did not display monoclonal Ig gene rearrangements. Endogenous or ectopic expression of MLL-AF4 exerted no effect on MSC culture homeostasis. These findings suggest that MSCs may be in part tumor-related, highlighting an unrecognized role of the BM milieu on the pathogenesis of MLL-AF4(+) B-ALL. MLL-AF4 itself is not sufficient for MSC transformation and the expression of MLL-AF4 in MSCs is compatible with a mesenchymal phenotype, suggesting a differential impact in the hematopoietic system and mesenchyme. The absence of monoclonal rearrangements in MLL-AF4(+) BM-MSCs precludes the possibility of cellular plasticity or de-differentiation of B-ALL blasts and suggests that MLL-AF4 might arise in a population of prehematopoietic precursors.


Subject(s)
Mesenchymal Stem Cells/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cells, Cultured , Child , Child, Preschool , Core Binding Factor Alpha 2 Subunit/analysis , Gene Rearrangement , Homeostasis , Humans , Infant , Myeloid-Lymphoid Leukemia Protein/analysis , Oncogene Proteins, Fusion/analysis
9.
Carcinogenesis ; 30(9): 1628-37, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19587093

ABSTRACT

MLL rearrangements are hallmark genetic abnormalities in infant leukemia known to arise in utero. They can be induced during human prenatal development upon exposure to etoposide. We also hypothesize that chronic exposure to etoposide might render cells more susceptible to other genomic insults. Here, for the first time, human embryonic stem cells (hESCs) were used as a model to test the effects of etoposide on human early embryonic development. We addressed whether: (i) low doses of etoposide promote MLL rearrangements in hESCs and hESCs-derived hematopoietic cells; (ii) MLL rearrangements are sufficient to confer hESCs with a selective growth advantage and (iii) continuous exposure to low doses of etoposide induces hESCs to acquire other chromosomal abnormalities. In contrast to cord blood-derived CD34(+) and hESC-derived hematopoietic cells, exposure of undifferentiated hESCs to a single low dose of etoposide induced a pronounced cell death. Etoposide induced MLL rearrangements in hESCs and their hematopoietic derivatives. After long-term culture, the proportion of hESCs harboring MLL rearrangements diminished and neither cell cycle variations nor genomic abnormalities were observed in the etoposide-treated hESCs, suggesting that MLL rearrangements are insufficient to confer hESCs with a selective proliferation/survival advantage. However, continuous exposure to etoposide induced MLL breaks and primed hESCs to acquire other major karyotypic abnormalities. These data show that chronic exposure of developmentally early stem cells to etoposide induces MLL rearrangements and make hESCs more prone to acquire other chromosomal abnormalities than postnatal CD34(+) cells, linking embryonic genotoxic exposure to genomic instability.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Chromosome Aberrations/drug effects , Embryonic Stem Cells/drug effects , Etoposide/toxicity , Gene Rearrangement , Myeloid-Lymphoid Leukemia Protein/genetics , Antigens, CD34/analysis , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Embryonic Stem Cells/ultrastructure , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Histone-Lysine N-Methyltransferase , Humans
10.
Cell Res ; 19(6): 698-709, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19308090

ABSTRACT

A paracrine regulation was recently proposed in human embryonic stem cells (hESCs) grown in mouse embryonic fibroblast (MEF)-conditioned media (MEF-CM), where hESCs spontaneously differentiate into autologous fibroblast-like cells to maintain culture homeostasis by producing TGF-beta and insulin-like growth factor-II (IGF-II) in response to basic fibroblast growth factor (bFGF). Although the importance of TGF-beta family members in the maintenance of pluripotency of hESCs is widely established, very little is known about the role of IGF-II. In order to ease hESC culture conditions and to reduce xenogenic components, we sought (i) to determine whether hESCs can be maintained stable and pluripotent using CM from human foreskin fibroblasts (HFFs) and human mesenchymal stem cells (hMSCs) rather than MEF-CM, and (ii) to analyze whether the cooperation of bFGF with TGF-beta and IGF-II to maintain hESCs in MEF-CM may be extrapolated to hESCs maintained in allogeneic mesenchymal stem cell (MSC)-CM and HFF-CM. We found that MSCs and HFFs express all FGF receptors (FGFR1-4) and specifically produce TGF-beta in response to bFGF. However, HFFs but not MSCs secrete IGF-II. Despite the absence of IGF-II in MSC-CM, hESC pluripotency and culture homeostasis were successfully maintained in MSC-CM for over 37 passages. Human ESCs derived on MSCs and hESCs maintained in MSC-CM retained hESC morphology, euploidy, expression of surface markers and transcription factors linked to pluripotency and displayed in vitro and in vivo multilineage developmental potential, suggesting that IGF-II may be dispensable for hESC pluripotency. In fact, IGF-II blocking had no effect on the homeostasis of hESC cultures maintained either on HFF-CM or on MSC-CM. These data indicate that hESCs are successfully maintained feeder-free with IGF-II-lacking MSC-CM, and that the previously proposed paracrine mechanism by which bFGF cooperates with TGF-beta and IGF-II in the maintenance of hESCs in MEF-CM may not be fully extrapolated to hESCs maintained in CM from human MSCs.


Subject(s)
Embryonic Stem Cells/cytology , Insulin-Like Growth Factor II/metabolism , Mesenchymal Stem Cells/metabolism , Transforming Growth Factor beta/metabolism , Culture Media, Conditioned , Embryonic Stem Cells/metabolism , Fibroblast Growth Factor 2/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Mesenchymal Stem Cells/cytology
11.
Neoplasia ; 11(4): 397-407, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19308294

ABSTRACT

There is growing evidence about the role of mesenchymal stem cells (MSCs) as cancer stem cells in many sarcomas. Nevertheless, little is still known about the cellular and molecular mechanisms underlying MSCs transformation. We aimed at investigating the role of p53 and p21, two important regulators of the cell cycle progression and apoptosis normally involved in protection against tumorigenesis. Mesenchymal stem cells from wild-type, p21(-/-)p53(+/+), and p21(-/-)p53(+/-) mice were cultured in vitro and analyzed for the appearance of tumoral transformation properties after low, medium, and high number of passages both in vitro and in vivo. Wild-type or p21(-/-)p53(+/+) MSCs did not show any sign of tumoral transformation. Indeed, after short-term in vitro culture, wild-type MSCs became senescent, and p21(-/-)p53(+/+) MSCs showed an elevated spontaneous apoptosis rate. Conversely, MSCs carrying a mutation in one allele of the p53 gene (p21(-/-)p53(+/-) MSCs) completely lost p53 expression after in vitro long-term culture. Loss of p53 was accompanied by a significant increase in the growth rate, gain of karyotypic instability, loss of p16 expression, and lack of senescence response. Finally, these cells were able to form fibrosarcomas partially differentiated into different mesenchymal lineages when injected in immunodeficient mice both after subcutaneous and intrafemoral injection. These findings show that MSCs are very sensitive to mutations in genes involved in cell cycle control and that these deficiencies can be at the origin of some mesodermic tumors.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cyclin-Dependent Kinase Inhibitor p21/deficiency , Mesenchymal Stem Cells/pathology , Neoplastic Stem Cells/pathology , Tumor Suppressor Protein p53/genetics , Animals , Blotting, Western , Cell Transformation, Neoplastic/metabolism , Cellular Senescence/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Flow Cytometry , Mesenchymal Stem Cells/metabolism , Mice , Mice, Mutant Strains , Mutation , Neoplastic Stem Cells/metabolism
12.
Cell Biol Int ; 31(9): 861-9, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17467306

ABSTRACT

Regenerative medicine and cell therapy are emerging clinical disciplines in the field of stem cell biology. The most important sources for cell transplantation are human embryonic and adult stem cells. The future use of these human stem cell lines in humans requires a guarantee of exhaustive control with respect to quality control, safety and traceability. Genetic instability and chromosomal abnormalities represent a potential weakness in basic studies and future therapeutic applications based on these stem cell lines, and may explain, at least in part, their usual tumourigenic properties. So, the introduction of the cytogenetic programme in the determination of the chromosomal stability is a key point in the establishment of the stem cell lines. The aim of this review is to provide readers with an up-to-date overview of all the cytogenetic techniques, both conventional methods and molecular fluorescence methods, to be used in a stem cell bank or other stem cell research centres. Thus, it is crucial to optimize and validate their use in the determination of the chromosomal stability of these stem cell lines, and assess the advantages and limitations of these cutting-edge cytogenetic technologies.


Subject(s)
Cytogenetics/methods , Animals , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Stem Cells
13.
Biotechnol Appl Biochem ; 46(Pt 4): 205-9, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17064255

ABSTRACT

hESCs (human embryonic stem cells) are pluripotent cells derived from the ICM (inner cell mass) of blastocysts that can be used to derive several kinds of cells of the human body for the treatment of some previously untreated diseases. In considering the future use of hESCs in regenerative medicine and cell-therapy programmes, several research centres have begun projects involving the derivation of hESC lines using spare human embryos from IVF (in vitro fertilization) cycles. In some stem-cell banks, such as ours, the law also permits us to obtain these cell lines. The low availability of spare IVF human embryos, and the low rate of success in the derivation of hESC lines, give these embryos a great research value that limits experiments with new techniques. The use of murine embryos would be a good model with which to do research to discover the best methodologies to use in order to derive new hESC lines. The aim of the present study was to evaluate a new method of isolation of the ICM and derivation of ESC lines in a murine blastocyst model using laser drilling to eliminate the trophectoderm cells and compare it with the usual control method consisting of culturing the whole murine blastocyst. We also tested the adhesion and growth of primary colonies of mESCs (murine ESCs) over two different growth surfaces, namely an MEF (inactive murine fibroblastic feeder layer) or gelatin-coated dishes, in order to achieve the best culture conditions for future derivation of human stem-cell lines for application in human transplantation.


Subject(s)
Blastocyst Inner Cell Mass/cytology , Lasers , Microdissection/methods , Animals , Cells, Cultured , Embryo Culture Techniques , Embryonic Stem Cells/cytology , Female , Mice , Mice, Inbred C57BL , Mice, Inbred CBA
14.
Cytotechnology ; 52(1): 1-11, 2006 Sep.
Article in English | MEDLINE | ID: mdl-19002861

ABSTRACT

With the introduction of regenerative medicine and cell therapy programmes by means of human embryonic stem cells (hESC), several research centres have begun projects of derivation of hESC lines. In some stem cell banks, such as the Andalusian Stem Cell Bank, the law also permits the creation of these cell lines. Therefore, the recovery of cryopreserved embryos, their culture and the subsequent derivation to hESC lines requires a suitable embryology laboratory and specialized and highly qualified staff. Moreover, new techniques, from therapeutic nuclear transfer, need this type of laboratory and staff, too. Several International Associations have drawn up some guidelines for laboratories where embryos are manipulated and they reflect the physical space, the staff and the equipment needed in these kinds of laboratories. Nevertheless, we can see that these guidelines do not distinguish between IVF laboratories and other laboratories that obtain hESC lines, so it would be convenient to make a distinction. Following these guidelines, we have tried to draw up concurrent aspects applicable to areas of embryology within stem cell banks. So, the design and the specific implementation programmes for these areas and other research centres with this area but which do not use IVF techniques is vital to develop embryonic cell lines in optimum conditions for future therapeutic applications, although maybe it is rather premature to standardize this type of research.

15.
Appl Microbiol Biotechnol ; 68(4): 456-66, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16012832

ABSTRACT

The transplant of cells of human origin is an increasingly complex sector of medicine which entails great opportunities for the treatment of a range of diseases. Stem cell banks should assure the quality, traceability and safety of cultures for transplantation and must implement an effective programme to prevent contamination of the final product. In donors, the presence of infectious micro-organisms, like human immunodeficiency virus, hepatitis B virus, hepatitis C virus and human T cell lymphotrophic virus, should be evaluated in addition to the possibility of other new infectious agents (e.g. transmissible spongiform encephalopathies and severe acute respiratory syndrome). The introduction of the nucleic acid amplification can avoid the window period of these viral infections. Contamination from the laboratory environment can be achieved by routine screening for bacteria, fungi, yeast and mycoplasma by European pharmacopoeia tests. Fastidious micro-organisms, and an adventitious or endogenous virus, is a well-known fact that will also have to be considered for processes involving in vitro culture of stem cells. It is also a standard part of current good practice in stem cell banks to carry out routine environmental microbiological monitoring of the cleanrooms where the cell cultures and their products are prepared. The risk of viral contamination from products of animal origin, like bovine serum and mouse fibroblasts as a "feeder layer" for the development of embryonic cell lines, should also be considered. Stem cell lines should be tested for prion particles and a virus of animal origin that assure an acceptable quality.


Subject(s)
Biological Specimen Banks , Cells, Cultured/microbiology , Stem Cells/microbiology , Tissue and Organ Harvesting/standards , Equipment Contamination , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...