Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurol ; 271(6): 3370-3377, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38498118

ABSTRACT

OBJECTIVES: Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disorder. Diagnosis is challenging due to its clinical heterogeneity and the absence of definitive diagnostic tools, leading to delays averaging between 9.1 and 27 months. In vivo corneal confocal microscopy, assessing the sub-basal nerve plexus of the cornea, has been proposed as a potential biomarker for ALS. We aimed to determine whether the assessment of corneal nerves using in vivo confocal microscopy can serve as an imaging biomarker for ALS. METHODS: A single-centre prospective case-control study was conducted in France from September 2021 to March 2023 including patients with ALS according to the revised EI Escorial criteria. The corneal sub-basal nerve plexus was analysed using in vivo confocal microscopy. An automated algorithm (ACCMetrics) was used to evaluate corneal parameters: nerve fibre density, nerve branch density, nerve fibre length, nerve fibre area, nerve total branch density, nerve fibre width, and nerve fractal dimension. RESULTS: Twenty-two patients with ALS and 30 controls were included. No significant differences were found between ALS and control groups for all corneal parameters (p > 0.05). Corneal sensitivity did not differ between groups, and no correlation was identified between corneal nerve parameters and ALS disease duration, severity and rate of progression (p > 0.05). CONCLUSIONS: The present study does not support the use of in vivo corneal confocal microscopy as an early diagnostic or prognostic tool for ALS. Further research, especially longitudinal investigations, is needed to understand any potential corneal innervation changes as ALS progresses.


Subject(s)
Amyotrophic Lateral Sclerosis , Cornea , Microscopy, Confocal , Humans , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Male , Cornea/innervation , Cornea/diagnostic imaging , Cornea/pathology , Female , Middle Aged , Aged , Case-Control Studies , Prospective Studies , Nerve Fibers/pathology , Adult
2.
Talanta ; 253: 123932, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36155322

ABSTRACT

To facilitate application in ophthalmological and systemic diseases, there is a need to standardize preanalytical and analytical steps for metabo-lipidomics in human tears. We assessed different methods for each step of the workflow, from sampling to omics profiles acquisition, to provide the largest metabo-lipidomic coverage with the most robust analytical criteria in human tears. We compared reproducibility according to different extraction methods, two sampling techniques, three volumes (2 µL, 5 µL, 10 µL) and eye laterality using ultra-high-performance liquid chromatography coupled with tandem high-resolution mass spectrometry for metabolomic and lipidomic application. The effect of age on the tear metabo-lipidome was also investigated in healthy subjects. The extraction method using methanol/water provided the best results for Schirmer strip metabolomics, while Folch extraction was superior for lipidomics, whatever the sampling method used. When comparing both sampling methods, microcapillary glass tube was superior to Schirmer strip for metabolomics but comparable for lipidomics. The 5 µL volume provided a satisfying metabo-lipidomic coverage. There was no significant difference in tear metabo-lipidome between both eyes in healthy subjects. While most metabolites and lipids where not influenced by age, the phenylalanine-tyrosine-tryptophan pathway, aminoacyl t-RNA biosynthesis, and alanine-aspartate-glutamate metabolism were the 3 principal pathways associated with the 15 most variable metabolites according to age. The current findings will contribute to improve metabo-lipidomic workflow in human tears for the identification of new biomarkers. Preanalytical and analytical standardization is mandatory in order to perform better between-study comparisons and increase the chances of transferring laboratory findings into clinical practice.


Subject(s)
Lipidomics , Tandem Mass Spectrometry , Humans , Chromatography, High Pressure Liquid , Reproducibility of Results , Metabolomics
3.
Surv Ophthalmol ; 67(4): 1229-1243, 2022.
Article in English | MEDLINE | ID: mdl-35093405

ABSTRACT

The human tear film is at the interface between the ocular surface and the external environment. Although investigation has been hindered by its small volume, improvements in preanalytical and analytical methods have allowed the omics approach to represent an innovative biomarker search strategy. There is still a significant lack of standardization, representing a barrier for performing between-studies comparisons and transferring experimental findings into clinical use and trials. We summarize the preanalytical and analytical procedures, describe the biomarkers that can be found using the metabo-lipidomics approach, and provide our expert opinion for omics investigations in human tears. For this systematic review of 38 studies, we searched PubMed by combining Boolean operators with the following keywords: tear, metabolomic, lipidomic, -omics. The human tear metabo-lipidome has been well-characterized in normal individuals using high-resolution liquid chromatography coupled with mass spectrometry. Lipid and metabolite profiles were influenced by ocular (e.g., dry eye disorders; Meibomian gland dysfunction; contact lens wear; glaucoma; keratoconus; pterygium) and systemic conditions (e.g., multiple sclerosis). Investigating the tear metabo-lipidome could improve our understanding of the pathogenesis of both ocular and systemic diseases, but also provide diagnostic as well as prognostic biomarkers.


Subject(s)
Dry Eye Syndromes , Lipidomics , Biomarkers/analysis , Dry Eye Syndromes/metabolism , Humans , Meibomian Glands/metabolism , Metabolomics/methods , Tears/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...