Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Cybern ; 103(6): 471-85, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21165746

ABSTRACT

Typical patterns of hand-joint covariation arising in the context of grasping actions enable one to provide simplified descriptions of these actions in terms of small sets of hand-joint parameters. The computational model of mirror mechanisms introduced here hypothesizes that mirror neurons are crucially involved in coding and making this simplified motor information available for both action recognition and control processes. In particular, grasping action recognition processes are modeled in terms of a visuo-motor loop enabling one to make iterated use of mirror-coded motor information. In simulation experiments concerning the classification of reach-to-grasp actions, mirror-coded information was found to simplify the processing of visual inputs and to improve action recognition results with respect to recognition procedures that are solely based on visual processing. The visuo-motor loop involved in action recognition is a distinctive feature of this model which is coherent with the direct matching hypothesis. Moreover, the visuo-motor loop sets the model introduced here apart from those computational models that identify mirror neuron activity in action observation with the final outcome of computational processes unidirectionally flowing from sensory (and usually visual) to motor systems.


Subject(s)
Computer Simulation , Motor Neurons/physiology , Sensory Receptor Cells/physiology , Humans
2.
Med Phys ; 36(8): 3737-47, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19746807

ABSTRACT

The purpose of this study is to develop a software for the extraction of the hippocampus and surrounding medial temporal lobe (MTL) regions from T1-weighted magnetic resonance (MR) images with no interactive input from the user, to introduce a novel statistical indicator, computed on the intensities in the automatically extracted MTL regions, which measures atrophy, and to evaluate the accuracy of the newly developed intensity-based measure of MTL atrophy to (a) distinguish between patients with Alzheimer disease (AD), patients with amnestic mild cognitive impairment (aMCI), and elderly controls by using established criteria for patients with AD and aMCI as the reference standard and (b) infer about the clinical outcome of aMCI patients. For the development of the software, the study included 61 patients with mild AD (17 men, 44 women; mean age +/- standard deviation (SD), 75.8 years +/- 7.8; Mini Mental State Examination (MMSE) score, 24.1 +/- 3.1), 42 patients with aMCI (11 men, 31 women; mean age +/- SD, 75.2 years +/- 4.9; MMSE score, 27.9 +/- 1.9), and 30 elderly healthy controls (10 men, 20 women; mean age +/- SD, 74.7 years +/- 5.2; MMSE score, 29.1 +/- 0.8). For the evaluation of the statistical indicator, 150 patients with mild AD (62 men, 88 women; mean age +/- SD, 76.3 years +/- 5.8; MMSE score, 23.2 +/- 4.1), 247 patients with aMCI (143 men, 104 women; mean age +/- SD, 75.3 years +/- 6.7; MMSE score, 27.0 +/- 1.8), and 135 elderly healthy controls (61 men, 74 women; mean age +/- SD, 76.4 years +/- 6.1). Fifty aMCI patients were evaluated every 6 months over a 3 year period to assess conversion to AD. For each participant, two subimages of the MTL regions were automatically extracted from T1-weighted MR images with high spatial resolution. An intensity-based MTL atrophy measure was found to separate control, MCI, and AD cohorts. Group differences were assessed by using two-sample t test. Individual classification was analyzed by using receiver operating characteristic (ROC) curves. Compared to controls, significant differences in the intensity-based MTL atrophy measure were detected in both groups of patients (AD vs controls, 0.28 +/- 0.03 vs 0.34 +/- 0.03, P < 0.001; aMCI vs controls, 0.31 +/- 0.03 vs 0.34 +/- 0.03, P < 0.001). Moreover, the subgroup of aMCI converters was significantly different from controls (0.27 +/- 0.034 vs 0.34 +/- 0.03, P < 0.001). Regarding the ROC curve for intergroup discrimination, the area under the curve was 0.863 for AD patients vs controls, 0.746 for all aMCI patients vs controls, and 0.880 for aMCI converters vs controls. With specificity set at 85%, the sensitivity was 74% for AD vs controls, 45% for aMCI vs controls, and 83% for aMCI converters vs controls. The automated analysis of MTL atrophy in the segmented volume is applied to the early assessment of AD, leading to the discrimination of aMCI converters with an average 3 year follow-up. This procedure can provide additional useful information in the early diagnosis of AD.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Atrophy , Subtraction Technique , Temporal Lobe/pathology , Aged , Automation , Female , Hippocampus/pathology , Humans , Magnetic Resonance Imaging , Male , Software , Time Factors
3.
Brain Res ; 1225: 133-45, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18538746

ABSTRACT

This paper addresses the problem of extracting view-invariant visual features for the recognition of object-directed actions and introduces a computational model of how these visual features are processed in the brain. In particular, in the test-bed setting of reach-to-grasp actions, grip aperture is identified as a good candidate for inclusion into a parsimonious set of hand high-level features describing overall hand movement during reach-to-grasp actions. The computational model NeGOI (neural network architecture for measuring grip aperture in an observer-independent way) for extracting grip aperture in a view-independent fashion was developed on the basis of functional hypotheses about cortical areas that are involved in visual processing. An assumption built into NeGOI is that grip aperture can be measured from the superposition of a small number of prototypical hand shapes corresponding to predefined grip-aperture sizes. The key idea underlying the NeGOI model is to introduce view-independent units (VIP units) that are selective for prototypical hand shapes, and to integrate the output of VIP units in order to compute grip aperture. The distinguishing traits of the NEGOI architecture are discussed together with results of tests concerning its view-independence and grip-aperture recognition properties. The overall functional organization of NEGOI model is shown to be coherent with current functional models of the ventral visual stream, up to and including temporal area STS. Finally, the functional role of the NeGOI model is examined from the perspective of a biologically plausible architecture which provides a parsimonious set of high-level and view-independent visual features as input to mirror systems.


Subject(s)
Brain/physiology , Hand Strength/physiology , Hand/physiology , Motion Perception/physiology , Pattern Recognition, Visual/physiology , Psychomotor Performance/physiology , Algorithms , Computer Simulation , Fingers/physiology , Humans , Nerve Net/physiology , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...