Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 11(30): 14294-14302, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31318368

ABSTRACT

Room-temperature printing of conductive traces has the potential to facilitate the direct writing of electronic tattoos and other medical devices onto biological tissue, such as human skin. However, in order to achieve sufficient electrical performance, the vast majority of conductive inks require biologically harmful post-processing techniques. In addition, most printed conductive traces will degrade with bending stresses that occur from everyday movement. In this work, water-based inks consisting of high aspect ratio silver nanowires are shown to enable the printing of conductive traces at low temperatures and without harmful post-processing. Moreover, the traces produced from these inks retain high electrical performance, even while undergoing up to 50% bending strain and cyclic bending strain over a thousand bending cycles. This ink has a rapid dry time of less than 2 minutes, which is imperative for applications requiring the direct writing of electronics on sensitive surfaces. Demonstrations of conductive traces printed onto soft, nonplanar materials, including an apple and a human finger, highlight the utility of these new silver nanowire inks. These mechanically robust films are ideally suited for printing directly on biological substrates and may find potential applications in the direct-write printing of electronic tattoos and other biomedical devices.


Subject(s)
Nanowires/chemistry , Silver/chemistry , Tattooing/methods , Electronics , Humans , Ink , Tattooing/instrumentation
2.
J Med Imaging (Bellingham) ; 6(2): 021604, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30915385

ABSTRACT

Anthropomorphic breast phantoms mimic patient anatomy in order to evaluate clinical mammography and digital breast tomosynthesis system performance. Our goal is to create a modular phantom with an anthropomorphic region to allow for improved lesion and calcification detection as well as a uniform region to evaluate standard quality control (QC) metrics. Previous versions of this phantom used commercial photopolymer inkjet three-dimensional printers to recreate breast anatomy using four surfaces that were fabricated with commercial materials spanning only a limited breast density range of 36% to 64%. We use modified printers to create voxelized, dithered breast phantoms with continuous gradations between glandular and adipose tissues. Moreover, the new phantom replicates the low-end density (representing adipose tissue) using third party material, Jf Flexible, and increases the high-end density to the density of glandular tissue and beyond by either doping Jf Flexible with salts and nanoparticles or using a new commercial resin, VeroPureWhite. An insert design is utilized to add masses, calcifications, and iodinated objects into the phantom for increased utility. The uniform chest wall region provides a space for traditional QC objects such as line pair patterns for measuring resolution and scale bars for measuring printer linearity. Incorporating these distinct design modules enables us to create an improved, complete breast phantom to better evaluate clinical mammography systems for lesion and calcification detection and standard QC performance evaluation.

3.
ACS Nano ; 12(4): 3689-3698, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29537819

ABSTRACT

Materials that retain a high conductivity under strain are essential for wearable electronics. This article describes a conductive, stretchable composite consisting of a Cu-Ag core-shell nanowire felt infiltrated with a silicone elastomer. This composite exhibits a retention of conductivity under strain that is superior to any composite with a conductivity greater than 1000 S cm-1. This work also shows how the mechanical properties, conductivity, and deformation mechanism of the composite changes as a function of the stiffness of the silicone matrix. The retention of conductivity under strain was found to decrease as the Young's modulus of the matrix increased. This was attributed to void formation as a result of debonding between the nanowire felt and the elastomer. The nanowire composite was also patterned to create serpentine circuits with a stretchability of 300%.

4.
Nanoscale Horiz ; 1(4): 313-316, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-32260651

ABSTRACT

Printable electronics has the potential to drastically reduce the environmental and economic costs associated with the production of electronic devices, as well as enable rapid prototyping of circuits and their printing on demand, similar to what 3D printing has done for structural objects. A major barrier to the realization of printable computers that can run programs is the lack of a solution-coatable non-volatile memory with performance metrics comparable to silicon-based devices. Here we demonstrate a non-volatile memory based on Cu-SiO2 core-shell nanowires that can be printed from solution and exhibits on-off ratios of 106, switching speeds of 50 ns, a low operating voltage of 2 V, and operates for at least 104 cycles without failure. Each of these metrics is similar to or better than Flash memory (the write speed is 20 times faster than Flash). Memory architectures based on the individual memory cells demonstrated here could enable the printing of the more complex, embedded computing devices that are expected to make up an internet of things.

5.
Sci Rep ; 5: 18333, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26669447

ABSTRACT

The low performance or high cost of commercially available conductive inks limits the advancement of printed electronics. This article studies the explosion of metal wires in aqueous solutions as a simple, low-cost, and environmentally friendly method to prepare metallic nanoparticles consisting of Cu and Cu alloys for use in affordable, highly conductive inks. Addition of 0.2 M ascorbic acid to an aqueous explosion medium prevented the formation of Cu2O shells around Cu nanoparticles, and allowed for the printing of conductive lines directly from these nanoparticles with no post-treatment. Cu alloy nanoparticles were generated from metal wires that were alloyed as purchased, or from two wires of different metals that were twisted together. Cu nanoparticles alloyed with 1% Sn, 5% Ag, 5% Ni and 30% Ni had electrical conductivities similar to Cu but unlike Cu, remained conductive after 24 hrs at 85 °C and 85% RH.

SELECTION OF CITATIONS
SEARCH DETAIL
...