Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 652(Pt A): 362-368, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37574353

ABSTRACT

HYPOTHESIS: To understand the relationship between topography and wetting, it is not enough to study the contact angle. Indeed, the liquid-solid interface plays an important role in wetting. However, data such as the total triple line length, the wetting area and the anchoring depth are inaccessible or difficult to obtain experimentally. This work proposes to overcome the experimental limitations by using a numerical approach to characterize the wetting behavior on textured surfaces. METHODS: The wetting behavior of an anisotropic textured surface was compared for both experimental and numerical approaches. The experimental wetting is characterized by sessile drop experiments. The simulations were performed by applying the pseudo-potential Lattice-Boltzmann method. The numerical approach was then used to predict the wetting behavior of different materials. FINDINGS: The simulations capture both the wetting state and the contact angle, in accordance with the experimental observation. Without making any assumptions about the interfacial shape and anchoring, the simulation allows to characterize the liquid-solid interface by quantifying the total length of the triple line and the wetting area. Simultaneously, the simulations enable the characterization of impregnation within textures for complex mixed regimes.

2.
Polymers (Basel) ; 12(10)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050464

ABSTRACT

The objective of this work is to study the influence of the ratio between the elastomer (EPDM) phase and the thermoplastic phase (PP) in thermoplastic vulcanizates (TPVs) as well as the associated morphology of the compression set of the material. First, from a study of the literature, it is concluded that the rubber phase must be dispersed with a large distribution of the domain size in the thermoplastic phase in order to achieve a high concentration, i.e., a maximal packing fraction close to ~0.80. From this discussion, it is inferred that a certain degree of progress in the crosslinking reaction must be reached when the thermoplastic phase is melted during mixing in order to achieve dispersion of the elastomeric phase in the thermoplastic matrix under maximum stress. In terms of elasticity recovery which is measured from the compression set experiment, it is observed that the crosslinking agent nature (DCP or phenolic resin) has no influence in the case of a TPV compared with a pure crosslinked EPDM system. Then, the TPV morphology and the rubber phase concentration are the first order parameters in the compression set of TPVs. Finally, the addition of carbon black fillers leads to an improvement of the mechanical properties at break for the low PP concentration (20%). However, the localization of carbon black depends on the crosslinking chemistry nature. With radical chemistry by organic peroxide decomposition, carbon black is located at the interface of EPDM and PP acting as a compatibilizer.

SELECTION OF CITATIONS
SEARCH DETAIL
...