Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21265137

ABSTRACT

Multiple summer events, including large indoor gatherings, in Provincetown, Massachusetts (MA), in July 2021 contributed to an outbreak of over one thousand COVID-19 cases among residents and visitors. Most cases were fully vaccinated, many of whom were also symptomatic, prompting a comprehensive public health response, motivating changes to national masking recommendations, and raising questions about infection and transmission among vaccinated individuals. To characterize the outbreak and the viral population underlying it, we combined genomic and epidemiological data from 467 individuals, including 40% of known outbreak-associated cases. The Delta variant accounted for 99% of sequenced outbreak-associated cases. Phylogenetic analysis suggests over 40 sources of Delta in the dataset, with one responsible for a single cluster containing 83% of outbreak-associated genomes. This cluster was likely not the result of extensive spread at a single site, but rather transmission from a common source across multiple settings over a short time. Genomic and epidemiological data combined provide strong support for 25 transmission events from, including many between, fully vaccinated individuals; genomic data alone provides evidence for an additional 64. Together, genomic epidemiology provides a high-resolution picture of the Provincetown outbreak, revealing multiple cases of transmission of Delta from fully vaccinated individuals. However, despite its magnitude, the outbreak was restricted in its onward impact in MA and the US, likely due to high vaccination rates and a robust public health response.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21264641

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40-80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Deltas infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37-163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58-120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average [~]6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Deltas enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21263756

ABSTRACT

Background and ObjectivesCase-based surveillance of pediatric COVID-19 cases underestimates the prevalence of SARS-CoV-2 infections among children and adolescents. Our objectives were to: 1) estimate monthly SARS-CoV-2 antibody seroprevalence among children aged 0-17 years and 2) calculate ratios of SARS-CoV-2 infections to reported COVID-19 cases among children and adolescents in 14 U.S. states. MethodsUsing data from commercial laboratory seroprevalence surveys, we estimated monthly SARS-CoV-2 antibody seroprevalence among children aged 0-17 years from August 2020 through May 2021. Seroprevalence estimates were based on SARS-CoV-2 anti-nucleocapsid immunoassays from February to May 2021. We compared estimated numbers of children infected with SARS-CoV-2 by May 2021 to cumulative incidence of confirmed and probable COVID-19 cases from case-based surveillance, and calculated infection: case ratios by state and type of anti-SARS-CoV-2 nucleocapsid immunoassay used for seroprevalence testing. ResultsAnalyses included 67,321 serum specimens tested for SARS-CoV-2 antibodies among children in 14 U.S. states. Estimated ratios of SARS-CoV-2 infections to reported confirmed and probable COVID-19 cases among children and adolescents varied by state and type of immunoassay, ranging from 0.8-13.3 in May 2021. ConclusionsThrough May 2021, the majority of children in selected states did not have detectable SARS-CoV-2 nucleocapsid antibodies. Case-based surveillance underestimated the number of children infected with SARS-CoV-2, however the predicted extent of the underestimate varied by state, immunoassay, and over time. Continued monitoring of pediatric SARS-CoV-2 antibody seroprevalence should inform prevention and vaccination strategies.

4.
Stephanie A. Kujawski; Karen K Wong; Jennifer P. Collins; Lauren Epstein; Marie E. Killerby; Claire M. Midgley; Glen R. Abedi; N. Seema Ahmed; Olivia Almendares; Francisco N. Alvarez; Kayla N. Anderson; Sharon Balter; Vaughn Barry; Karri Bartlett; Karlyn Beer; Michael A. Ben-Aderet; Isaac Benowitz; Holly Biggs; Alison M. Binder; Stephanie R. Black; Brandon Bonin; Catherine M. Brown; Hollianne Bruce; Jonathan Bryant-Genevier; Alicia Budd; Diane Buell; Rachel Bystritsky; Jordan Cates; E. Matt Charles; Kevin Chatham-Stephens; Nora Chea; Howard Chiou; Demian Christiansen; Victoria Chu; Sara Cody; Max Cohen; Erin Conners; Aaron Curns; Vishal Dasari; Patrick Dawson; Traci DeSalvo; George Diaz; Matthew Donahue; Suzanne Donovan; Lindsey M. Duca; Keith Erickson; Mathew D. Esona; Suzanne Evans; Jeremy Falk; Leora R. Feldstein; Martin Fenstersheib; Marc Fischer; Rebecca Fisher; Chelsea Foo; Marielle J. Fricchione; Oren Friedman; Alicia M. Fry; Romeo R. Galang; Melissa M. Garcia; Susa I. Gerber; Graham Gerrard; Isaac Ghinai; Prabhu Gounder; Jonathan Grein; Cheri Grigg; Jeffrey D. Gunzenhauser; Gary I. Gutkin; Meredith Haddix; Aron J. Hall; George Han; Jennifer Harcourt; Kathleen Harriman; Thomas Haupt; Amber Haynes; Michelle Holshue; Cora Hoover; Jennifer C. Hunter; Max W. Jacobs; Claire Jarashow; Michael A. Jhung; Kiran Joshi; Talar Kamali; Shifaq Kamili; Lindsay Kim; Moon Kim; Jan King; Hannah L. Kirking; Amanda Kita-Yarbro; Rachel Klos; Miwako Kobayashi; Anna Kocharian; Kenneth K. Komatsu; Ram Koppaka; Jennifer E. Layden; Yan Li; Scott Lindquist; Stephen Lindstrom; Ruth Link-Gelles; Joana Lively; Michelle Livingston; Kelly Lo; Jennifer Lo; Xiaoyan Lu; Brian Lynch; Larry Madoff; Lakshmi Malapati; Gregory Marks; Mariel Marlow; Glenn E. Mathisen; Nancy McClung; Olivia McGovern; Tristan D. McPherson; Mitali Mehta; Audrey Meier; Lynn Mello; Sung-sil Moon; Margie Morgan; Ruth N. Moro; Janna' Murray; Rekha Murthy; Shannon Novosad; Sara E. Oliver; Jennifer O'Shea; Massimo Pacilli; Clinton R. Paden; Mark A. Pallansch; Manisha Patel; Sajan Patel; Isabel Pedraza; Satish K. Pillai; Talia Pindyck; Ian Pray; Krista Queen; Nichole Quick; Heather Reese; Brian Rha; Heather Rhodes; Susan Robinson; Philip Robinson; Melissa Rolfes; Janell Routh; Rachel Rubin; Sarah L. Rudman; Senthilkumar K. Sakthivel; Sarah Scott; Christopher Shepherd; Varun Shetty; Ethan A. Smith; Shanon Smith; Bryan Stierman; William Stoecker; Rebecca Sunenshine; Regina Sy-Santos; Azaibi Tamin; Ying Tao; Dawn Terashita; Natalie J. Thornburg; Suxiang Tong; Elizabeth Traub; Ahmet Tural; Anna Uehara; Timothy M. Uyeki; Grace Vahey; Jennifer R. Verani; Elsa Villarino; Megan Wallace; Lijuan Wang; John T. Watson; Matthew Westercamp; Brett Whitaker; Sarah Wilkerson; Rebecca C. Woodruff; Jonathan M. Wortham; Tiffany Wu; Amy Xie; Anna Yousaf; Matthew Zahn; Jing Zhang.
Preprint in English | medRxiv | ID: ppmedrxiv-20032896

ABSTRACT

IntroductionMore than 93,000 cases of coronavirus disease (COVID-19) have been reported worldwide. We describe the epidemiology, clinical course, and virologic characteristics of the first 12 U.S. patients with COVID-19. MethodsWe collected demographic, exposure, and clinical information from 12 patients confirmed by CDC during January 20-February 5, 2020 to have COVID-19. Respiratory, stool, serum, and urine specimens were submitted for SARS-CoV-2 rRT-PCR testing, virus culture, and whole genome sequencing. ResultsAmong the 12 patients, median age was 53 years (range: 21-68); 8 were male, 10 had traveled to China, and two were contacts of patients in this series. Commonly reported signs and symptoms at illness onset were fever (n=7) and cough (n=8). Seven patients were hospitalized with radiographic evidence of pneumonia and demonstrated clinical or laboratory signs of worsening during the second week of illness. Three were treated with the investigational antiviral remdesivir. All patients had SARS-CoV-2 RNA detected in respiratory specimens, typically for 2-3 weeks after illness onset, with lowest rRT-PCR Ct values often detected in the first week. SARS-CoV-2 RNA was detected after reported symptom resolution in seven patients. SARS-CoV-2 was cultured from respiratory specimens, and SARS-CoV-2 RNA was detected in stool from 7/10 patients. ConclusionsIn 12 patients with mild to moderately severe illness, SARS-CoV-2 RNA and viable virus were detected early, and prolonged RNA detection suggests the window for diagnosis is long. Hospitalized patients showed signs of worsening in the second week after illness onset.

SELECTION OF CITATIONS
SEARCH DETAIL
...