Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(4): 5099-5105, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31904932

ABSTRACT

Here, we report that long-range order, direction-controlled, ultrathin conjugated polymer films can be formed by the self-assembly of conjugated block copolymers (i.e., poly(3-hexylthiophene)-block-poly(ethylene glycol)) at inclined air-water interfaces. Structure analyses revealed well-aligned nanowire arrays of poly(3-hexylthiophene) with a dramatically increased ordered domain size compared to the polymer films formed on a flat water surface. The improved degree of order was attributed to the flow field created by the enhanced solvent evaporation at the top of the water contact line. Note that it is challenging to prepare such well-ordered and molecularly thin films of conjugated polymers by conventional fabrication methods. The long-range order polymer film showed hole mobility an order of magnitude higher than polymer films formed on a flat interface when implemented as an active layer of field-effect transistor devices. This study demonstrates that a simple interface modification can significantly impact the self-assembly process, structure, and function of polymer films formed at the air-liquid interface.

2.
ACS Nano ; 8(12): 12755-62, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25486546

ABSTRACT

The ability to control the molecular packing and nanoscale morphology of conjugated polymers is important for many of their applications. Here, we report the fabrication of well-ordered nanoarrays of conjugated polymers, based on the self-assembly of conjugated block copolymers at the air-liquid interface. We demonstrate that the self-assembly of poly(3-hexylthiophene)-block-poly(ethylene glycol) (P3HT-b-PEG) at the air-water interface leads to large-area free-standing films of well-aligned P3HT nanowires. Block copolymers with high P3HT contents (82-91%) formed well-ordered nanoarrays at the interface. The fluidic nature of the interface, block copolymer architecture, and rigid nature of P3HT were necessary for the formation of well-ordered nanostructures. The free-standing films formed at the interface can be readily transferred to arbitrary solid substrates. The P3HT-b-PEG films are integrated in field-effect transistors and show orders of magnitude higher charge carrier mobility than spin-cast films, demonstrating that the air-liquid interfacial self-assembly is an effective thin film fabrication tool for conjugated block copolymers.

3.
J Phys Chem B ; 117(16): 4528-35, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23189962

ABSTRACT

Here, we report an unusual oxidation-induced photoluminescence (PL) turn-on response of a poly(3-alkoxythiophene), poly(3-{2-[2-(2-ethoxyethoxy)ethoxy]ethoxy}thiophene) (PEEEET). PEEEET shows a significantly red-shifted absorption spectrum compared to polyalkylthiophenes and is almost nonfluorescent (quantum yield ≪ 1%) in its pristine state. The introduction of sulfonyl defects along the polymer backbone by the oxidation of PEEEET with meta-chloroperbenzoic acid (m-CPBA) increased the emission quantum yield with the intensity increasing with the degree of oxidation. Molecular modeling data indicated that the oxidation-induced PL increase cannot be explained by the nature of monomer units and radiative rate changes. We attributed the enhanced fluorescence to the reduced nonradiative rate caused by the increased band gap, according to the energy gap law, which is consistent with the observed blue shifts in absorption and PL spectra accompanied by the PL increase.

SELECTION OF CITATIONS
SEARCH DETAIL
...