Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Neurosci ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744530

ABSTRACT

Sleep disorders affect millions of people around the world and have a high comorbidity with psychiatric disorders. While current hypnotics mostly increase non-rapid eye movement sleep (NREMS), drugs acting selectively on enhancing rapid eye movement sleep (REMS) are lacking. This polysomnographic study in male rats showed that the first-in-class selective melatonin MT1 receptor partial agonist UCM871 increases the duration of REMs without affecting that of NREMS. The REMS-promoting effects of UCM871 occurred by inhibiting, in a dose-response manner, the firing activity of the locus coeruleus (LC) norepinephrine (NE) neurons, which express MT1 receptors. The increase of REMS duration and the inhibition of LC-NE neuronal activity by UCM871 were abolished by MT1 pharmacological antagonism and by an adeno-associated viral (AAV) vector which selectively knocked down MT1 receptors in the LC-NE neurons. In conclusion, MT1 receptor agonism inhibits LC-NE neurons and triggers REMS, thus representing a novel mechanism and target for REMS disorders and/or psychiatric disorders associated with REMS impairments.Significance Statement Rapid eye movement sleep (REMS) is involved in the processes of memory consolidation and emotional regulation, but drugs selectively enhancing REMS are scant. Herein, we show that the first-in-class selective melatonin MT1 receptor agonist UCM871, by inhibiting the activity of norepinephrine neurons in the locus coeruleus, an important nucleus regulating the sleep/wake cycle, selectively increases the duration of REMS. These findings enhance our current understanding of the neurobiology and pharmacology of REMS and provide a possible novel mechanism and target for disorders associated with REMS dysfunctions.

2.
PLoS Genet ; 19(2): e1010606, 2023 02.
Article in English | MEDLINE | ID: mdl-36745687

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder caused by progressive loss of motor neurons and there is currently no effective therapy. Cytoplasmic mislocalization and aggregation of TAR DNA-binding protein 43 kDa (TDP-43) within the CNS is a pathological hallmark in sporadic ALS and prion-like propagation of pathogenic TDP-43 is thought to be implicated in disease progression. However, cell-to-cell transmission of pathogenic TDP-43 in the human CNS has not been confirmed experimentally. Here we used induced pluripotent stem cells (iPSCs)-derived cerebral organoids as recipient CNS tissue model that are anatomically relevant human brain. We injected postmortem spinal cord protein extracts individually from three non-ALS or five sporadic ALS patients containing pathogenic TDP-43 into the cerebral organoids to validate the templated propagation and spreading of TDP-43 pathology in human CNS tissue. We first demonstrated that the administration of spinal cord extracts from an ALS patient induced the formation of TDP-43 pathology that progressively spread in a time-dependent manner in cerebral organoids, suggesting that pathogenic TDP-43 from ALS functioned as seeds and propagated cell-to-cell to form de novo TDP-43 pathology. We also reported that the administration of ALS patient-derived protein extracts caused astrocyte proliferation to form astrogliosis in cerebral organoids, reproducing the pathological feature seen in ALS. Moreover, we showed pathogenic TDP-43 induced cellular apoptosis and that TDP-43 pathology correlated with genomic damage due to DNA double-strand breaks. Thus, our results provide evidence that patient-derived pathogenic TDP-43 can mimic the prion-like propagation of TDP-43 pathology in human CNS tissue. Our findings indicate that our assays with human cerebral organoids that replicate ALS pathophysiology have a promising strategy for creating readouts that could be used in future drug discovery efforts against ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Prions , Humans , Amyotrophic Lateral Sclerosis/pathology , Spinal Cord/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Prions/metabolism , Organoids/metabolism
3.
Commun Biol ; 5(1): 289, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354918

ABSTRACT

Tourette's Syndrome (TS) is a neurodevelopmental disorder that is characterized by motor and phonic tics. A recent TS genome-wide association study (GWAS) identified a genome-wide significant locus. However, determining the biological mechanism of GWAS signals remains difficult. To characterize effects of expression quantitative trait loci (eQTLs) in TS and understand biological underpinnings of the disease. Here, we conduct a TS transcriptome-wide association study (TWAS) consisting of 4819 cases and 9488 controls. We demonstrate that increased expression of FLT3 in the dorsolateral prefrontal cortex (DLPFC) is associated with TS. We further show that there is global dysregulation of FLT3 across several brain regions and probabilistic causal fine-mapping of the TWAS signal prioritizes FLT3 with a posterior inclusion probability of 0.849. After, we proxy the expression with 100 lymphoblastoid cell lines, and demonstrate that TS cells has a 1.72 increased fold change compared to controls. A phenome-wide association study also points toward FLT3 having links with immune-related pathways such as monocyte count. We further identify several splicing events in MPHOSPH9, CSGALNACT2 and FIP1L1 associated with TS, which are also implicated in immune function. This analysis of expression and splicing begins to explore the biology of TS GWAS signals.


Subject(s)
Tourette Syndrome , Case-Control Studies , Genome-Wide Association Study , Humans , Quantitative Trait Loci , Tourette Syndrome/genetics , Transcriptome , fms-Like Tyrosine Kinase 3
4.
JAMA Neurol ; 79(2): 185-193, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34982113

ABSTRACT

Importance: Essential tremor (ET) is one of the most common movement disorders, affecting 5% of the general population older than 65 years. Common variants are thought to contribute toward susceptibility to ET, but no variants have been robustly identified. Objective: To identify common genetic factors associated with risk of ET. Design, Setting, and Participants: Case-control genome-wide association study. Inverse-variance meta-analysis was used to combine cohorts. Multicenter samples collected from European populations were collected from January 2010 to September 2019 as part of an ongoing study. Included patients were clinically diagnosed with or reported having ET. Control individuals were not diagnosed with or reported to have ET. Of 485 250 individuals, data for 483 054 passed data quality control and were used. Main Outcomes and Measures: Genotypes of common variants associated with risk of ET. Results: Of the 483 054 individuals included, there were 7177 with ET (3693 [51.46%] female; mean [SD] age, 62.66 [15.12] years), and 475 877 control individuals (253 785 [53.33%] female; mean [SD] age, 56.40 [17.6] years). Five independent genome-wide significant loci and were identified and were associated with approximately 18% of ET heritability. Functional analyses found significant enrichment in the cerebellar hemisphere, cerebellum, and axonogenesis pathways. Genetic correlation (r), which measures the degree of genetic overlap, revealed significant common variant overlap with Parkinson disease (r, 0.28; P = 2.38 × 10-8) and depression (r, 0.12; P = 9.78 × 10-4). A separate fine-mapping of transcriptome-wide association hits identified genes such as BACE2, LRRN2, DHRS13, and LINC00323 in disease-relevant brain regions, such as the cerebellum. Conclusions and Relevance: The results of this genome-wide association study suggest that a portion of ET heritability can be explained by common genetic variation and can help identify new common genetic risk factors for ET.


Subject(s)
Essential Tremor/genetics , Adult , Aged , Case-Control Studies , Female , Genetic Predisposition to Disease/genetics , Genetic Variation , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Transcriptome
6.
Front Genet ; 11: 813, 2020.
Article in English | MEDLINE | ID: mdl-32849812

ABSTRACT

Objective: Essential tremor (ET) is a common movement disorder that has a high heritability. A number of genetic studies have associated different genes and loci with ET, but few have investigated the biology of any of these genes. STK32B was significantly associated with ET in a large genome-wide association study (GWAS) and was found to be overexpressed in ET cerebellar tissue. The objective of this study is to determine the effects of overexpressed STK32B in cerebellar DAOY cells. Methods: Here, we overexpressed STK32B RNA in human cerebellar DAOY cells and used an RNA-Seq approach to identify differentially expressed genes (DEGs) by comparing the transcriptome profile of these cells to one of the control DAOY cells. Results: Pathway and gene ontology enrichment identified axon guidance, olfactory signaling, and calcium-voltage channels as significant. Additionally, we show that overexpressing STK32B affects transcript levels of previously implicated ET genes such as FUS. Conclusion: Our results investigate the effects of overexpressed STK32B and suggest that it may be involved in relevant ET pathways and genes.

7.
Aging (Albany NY) ; 12(6): 4742-4756, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32205469

ABSTRACT

Machado-Joseph disease (MJD/SCA3) is the most common form of dominantly inherited ataxia worldwide. The disorder is caused by an expanded CAG repeat in the ATXN3 gene. Past studies have revealed that the length of the expansion partly explains the disease age at onset (AO) variability of MJD, which is confirmed in this study (Pearson's correlation coefficient R2 = 0.62). Using a total of 786 MJD patients from five different geographical origins, a genome-wide association study (GWAS) was conducted to identify additional AO modifying factors that could explain some of the residual AO variability. We identified nine suggestively associated loci (P < 1 × 10-5). These loci were enriched for genes involved in vesicle transport, olfactory signaling, and synaptic pathways. Furthermore, associations between AO and the TRIM29 and RAG genes suggests that DNA repair mechanisms might be implicated in MJD pathogenesis. Our study demonstrates the existence of several additional genetic factors, along with CAG expansion, that may lead to a better understanding of the genotype-phenotype correlation in MJD.


Subject(s)
Machado-Joseph Disease/genetics , Adult , Age of Onset , Ataxin-3/genetics , Female , Genome-Wide Association Study , Humans , Machado-Joseph Disease/epidemiology , Male , Polymorphism, Single Nucleotide , Repressor Proteins/genetics
8.
PLoS One ; 14(11): e0225186, 2019.
Article in English | MEDLINE | ID: mdl-31725784

ABSTRACT

Restless legs syndrome is a common complex disorder with different genetic and environmental risk factors. Here we used human cell lines to conduct an RNA-Seq study and observed how the gene showing the most significant association with RLS, MEIS1, acts as a regulator of the expression of many other genes. Some of the genes affected by its expression level are linked to pathways previously reported to be associated with RLS. We found that in cells where MEIS1 expression was either increased or prevented, mineral absorption is the principal dysregulated pathway. The mineral absorption pathway genes, HMOX1 and VDR are involved in iron metabolism and response to vitamin D, respectively. This shows a strong functional link to the known RLS pathways. We observed the same enrichment of the mineral absorption pathway in postmortem brain tissues of RLS patients showing a reduced expression of MEIS1. The expression of genes encoding metallothioneins (MTs) was observed to be dysregulated across the RNA-Seq datasets generated from both human cells and tissues. MTs are highly relevant to RLS as they bind intracellular metals, protect against oxidative stress and interact with ferritins which manage iron level in the central nervous system. Overall, our study suggests that in a subset of RLS patients, the contribution of MEIS1 appears to be associated to its downstream regulation of genes that are more directly involved in pathways that are relevant to RLS. While MTs have been implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's diseases, this is a first report to propose that they have a role in RLS.


Subject(s)
Brain/metabolism , Gene Expression Regulation , Minerals/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Restless Legs Syndrome/genetics , Restless Legs Syndrome/metabolism , Biomarkers , Cell Line, Tumor , Humans , Metabolic Networks and Pathways
9.
Neurol Genet ; 5(2): e317, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31041398

ABSTRACT

OBJECTIVE: To test for somatic C9orf72 hexanucleotide repeat expansion (HRE) and hexanucleotide repeat length instability in the spinal cord of amyotrophic lateral sclerosis (ALS) cases. METHODS: Whole and partial spinal cords of 19 ALS cases were dissected into transversal sections (5 mm thick). The presence of C9orf72 HRE was tested in each independent section using RepeatPrimed PCR and amplicon-size genotyping. Index measures for the testing of mosaicism were obtained through serial dilutions of genomic DNA from an individual carrying a germline C9orf72 HRE in the genomic DNA of an individual without a C9orf72 HRE. RESULTS: None of the sections examined supported the presence of a subpopulation of cells with a C9orf72 HRE. Moreover, the C9orf72 hexanucleotide repeat lengths measured were identical across all the spinal cord sections of each individual patient. CONCLUSIONS: We did not observe somatic instability of the C9orf72 HRE in disease relevant tissues of ALS cases.

10.
Sleep ; 41(11)2018 11 01.
Article in English | MEDLINE | ID: mdl-30215811

ABSTRACT

Two genome-wide association studies (GWAS) suggest that insomnia and restless legs syndrome (RLS) share a common genetic basis. While the identified genetic variation in the MEIS1 gene was previously associated with RLS, the two GWAS suggest a novel and independent association with insomnia symptoms. To test the potential pleiotropic effect of MEIS1, we genotyped three MEIS1 variants in 646 chronic insomnia disorder (CID) patients with and without RLS. To confirm our results, we compared the allelic and genotypic distributions of the CID cohort with ethnically matched controls and RLS cases in the French Canadian cohort. The CID cohort was diagnosed by sleep medicine specialists and 26% of the sample received the combined diagnosis of CID+RLS. We find significant differences in allele and genotype distributions between CID-only and CID+RLS groups, suggesting that MEIS1 is only associated with RLS. Genotype distributions and minor allele frequencies of the three MEIS1 SNPs of the CID-only and control groups were similar (rs113851554: 5.3% vs. 5.6%; rs2300478: 25.3% vs. 26.5%; rs12469063: 23.6% vs. 24.4%; all p > 0.05). Likewise, there were no differences between CID+RLS and RLS-only groups (all p > 0.05). In conclusion, our data confirms that MEIS1 is a genetic risk factor for the development of RLS, but it does not support the pleiotropic effect of MEIS1 in CID. While a lack of power precluded us from refuting small pleiotropic effects, our findings emphasize the critical importance of isolating CID from other disorders that can cause sleep difficulties, particularly RLS, for future genetic studies.


Subject(s)
Genome-Wide Association Study/methods , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Restless Legs Syndrome/epidemiology , Restless Legs Syndrome/genetics , Sleep Initiation and Maintenance Disorders/epidemiology , Sleep Initiation and Maintenance Disorders/genetics , Adult , Cohort Studies , Female , Humans , Male , Polymorphism, Single Nucleotide/genetics , Polysomnography/methods , Quebec/epidemiology , Restless Legs Syndrome/diagnosis , Sleep Initiation and Maintenance Disorders/diagnosis
11.
Sci Rep ; 8(1): 12173, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30111810

ABSTRACT

Restless Legs syndrome (RLS) is a common sleep disorder for which the genetic contribution remains poorly explained. In 2007, the first large scale genome wide association study (GWAS) identified three genomic regions associated with RLS. MEIS1, BTBD9 and MAP2K5/SKOR1 are the only known genes located within these loci and their association with RLS was subsequently confirmed in a number of follow up GWAS. Following this finding, our group reported the MEIS1 risk haplotype to be associated with its decreased expression at the mRNA and protein levels. Here we report the effect of the risk variants of the three other genes strongly associated with RLS. While these variants had no effect on the mRNA levels of the genes harboring them, we find that the homeobox transcription factor MEIS1 positively regulates the expression of the transcription co-repressor SKOR1. This regulation appears mediated through the binding of MEIS1 at two specific sites located in the SKOR1 promoter region and is modified by an RLS associated SNP in the promoter region of the gene. Our findings directly link MEIS1 and SKOR1, two significantly associated genes with RLS and also prioritize SKOR1 over MAP2K5 in the RLS associated intergenic region of MAP2K5/SKOR1 found by GWAS.


Subject(s)
Co-Repressor Proteins/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Restless Legs Syndrome/genetics , Adult , Aged , Case-Control Studies , Co-Repressor Proteins/metabolism , Female , Genes, Homeobox/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Haplotypes , Homeodomain Proteins/genetics , Humans , MAP Kinase Kinase 5/genetics , MAP Kinase Kinase 5/metabolism , Male , Middle Aged , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Polymorphism, Single Nucleotide/genetics , Transcription Factors/genetics
12.
Am J Hum Genet ; 91(2): 313-9, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22863194

ABSTRACT

Essential tremor (ET) is a common neurodegenerative disorder that is characterized by a postural or motion tremor. Despite a strong genetic basis, a gene with rare pathogenic mutations that cause ET has not yet been reported. We used exome sequencing to implement a simple approach to control for misdiagnosis of ET, as well as phenocopies involving sporadic and senile ET cases. We studied a large ET-affected family and identified a FUS p.Gln290(∗) mutation as the cause of ET in this family. Further screening of 270 ET cases identified two additional rare missense FUS variants. Functional considerations suggest that the pathogenic effects of ET-specific FUS mutations are different from the effects observed when FUS is mutated in amyotrophic lateral sclerosis cases; we have shown that the ET FUS nonsense mutation is degraded by the nonsense-mediated-decay pathway, whereas amyotrophic lateral sclerosis FUS mutant transcripts are not.


Subject(s)
Essential Tremor/genetics , Exome/genetics , Genetic Predisposition to Disease/genetics , RNA-Binding Protein FUS/genetics , Base Sequence , Humans , Molecular Sequence Data , Point Mutation/genetics , Quebec , Sequence Analysis, DNA
13.
Ann Neurol ; 70(1): 170-5, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21710629

ABSTRACT

Restless legs syndrome (RLS) is a frequent sleep disorder that is linked to disturbed iron homeostasis. Genetic studies identified MEIS1 as an RLS-predisposing gene, where the RLS risk haplotype is associated with decreased MEIS1 mRNA and protein expression. We show here that RNA interference treatment of the MEIS1 worm orthologue increases ferritin expression in Caenorhabditis elegans and that the RLS-associated haplotype leads to increased expression of ferritin and DMT1 in RLS brain tissues. Additionally, human cells cultured under iron-deficient conditions show reduced MEIS1 expression. Our data establish a link between the RLS MEIS1 gene and iron metabolism.


Subject(s)
Genetic Variation/genetics , Homeodomain Proteins/genetics , Homeostasis , Iron/metabolism , Neoplasm Proteins/genetics , Restless Legs Syndrome/genetics , Restless Legs Syndrome/metabolism , Anemia, Iron-Deficiency/genetics , Anemia, Iron-Deficiency/metabolism , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Cells, Cultured , HeLa Cells , Homeostasis/genetics , Humans , Myeloid Ecotropic Viral Integration Site 1 Protein , Risk Factors , Transcription Factors
14.
Neurobiol Dis ; 38(3): 425-33, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20227501

ABSTRACT

Developmental pathways may be play a role in adult cell survival. However, whether they interact with longevity/cell survival pathways to confer protection against disease-associated proteotoxicity remains largely unknown. We previously reported that the inhibition of key longevity modulators such as the deacetylase sir-2.1/SIRT1 (Sir2) and its target daf-16/FoxO protects transgenics nematodes from muscle cell decline and abnormal motility produced by the expression of mutant (polyalanine-expanded) PABPN1, the oculopharyngeal muscular dystrophy (OPMD) protein. Here, we report that canonical Wnt signaling (i) modulates muscular pathology in mutant PABPN1 nematodes, and (ii) cooperates with the Sir2-FoxO longevity pathway to confer protection against mutant PABPN1 toxicity at the cellular and behavioral levels. Mutant PABPN1 toxicity was modified by genes along the canonical Wnt pathway, several of which depend on daf-16 for activity. ss-catenin and pop-1/TCF RNAi suppressed the protection from mutant PABPN1 confered by loss-of-function mutations in sir-2.1 and daf-16. Moreover, the aggravation of muscle cell pathology by increased sir-2.1 dosage was reversed by ss-catenin and pop-1 RNAi. The chemical inhibition of GSK-3ss, a repressor of ss-catenin activity, protected against mutant PABPN1 toxicity in a daf-16-dependent manner, which is consistent with a cross-talk between ss-catenin signaling and Sir2-FoxO signaling in protecting from mutant PABPN1 toxicity. Our data reveal that canonical Wnt signaling and Sir2-FoxO signaling interact to modulate diseased muscle survival, and indicate that GSK-3ss inhibitors and sirtuin inhibitors both have therapeutic potential for muscle protection in OPMD.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Forkhead Transcription Factors/metabolism , Muscle Cells/metabolism , Signal Transduction , Sirtuins/metabolism , Wnt Proteins/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , DNA-Binding Proteins/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , High Mobility Group Proteins/metabolism , Muscle Cells/pathology , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation , Poly(A)-Binding Proteins , Transcription Factors/metabolism , beta Catenin/metabolism
15.
Hum Mol Genet ; 18(6): 1065-74, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19126776

ABSTRACT

Restless legs syndrome (RLS) is a common neurological disorder characterized by an irresistible urge to move the legs at night, which is often accompanied by unpleasant sensations. A recent genomewide association study identified an association between RLS and intronic markers from the MEIS1 gene. Comparative genomic analysis indicates that MEIS1 is the only gene encompassed in this evolutionarily conserved chromosomal segment, i.e. a conservation synteny block, from mammals to fish. We carried out a series of experiments to delineate the role of MEIS1 in RLS pathogenesis and the underlying genetic mechanism. We sequenced all 13 MEIS1 exons and their splice junctions in 285 RLS probands with confirmed clinical diagnosis and did not identify any causative coding or exon-intron junction mutations. We found no evidence of structural variation or disease-associated haplotype differential splicing. However, sequencing of conserved regions of MEIS1 introns 8 and 9 identified a novel single nucleotide polymorphism (C13B_2) significantly associated with RLS (allelic association, P = 1.81E-07). We detected a significant decrease in MEIS1 mRNA expression by quantitative real-time polymerase chain reaction in lymphoblastoid cell lines (LCLs) and brain tissues from RLS patients homozygous for the intronic RLS risk haplotype, compared with those homozygous for the non-risk haplotype. Finally, we found significantly decreased MEIS1 protein levels in the same batch of LCLs and brain tissues from the homozygous carriers of the risk haplotype, compared with the homozygous non-carriers. Therefore, these data suggest that reduced expression of the MEIS1 gene, possibly through intronic cis-regulatory element(s), predisposes to RLS.


Subject(s)
Gene Expression Regulation , Genetic Predisposition to Disease , Haplotypes , Homeodomain Proteins/genetics , Introns/genetics , Neoplasm Proteins/genetics , Restless Legs Syndrome/genetics , Alternative Splicing/genetics , Brain/metabolism , Brain/pathology , Case-Control Studies , Conserved Sequence , Humans , Myeloid Ecotropic Viral Integration Site 1 Protein , Physical Chromosome Mapping , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , Protein Isoforms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
Hum Mol Genet ; 17(14): 2108-17, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18397876

ABSTRACT

Oculopharyngeal muscular dystrophy (OPMD) is caused by polyalanine expansion in nuclear protein PABPN1 [poly(A) binding protein nuclear 1] and characterized by muscle degeneration. Druggable modifiers of proteotoxicity in degenerative diseases, notably the longevity modulators sirtuins, may constitute useful therapeutic targets. However, the modifiers of mutant PABPN1 are unknown. Here, we report that longevity and cell metabolism modifiers modulate mutant PABPN1 toxicity in the muscle cell. Using PABPN1 nematodes that show muscle cell degeneration and abnormal motility, we found that increased dosage of the sirtuin and deacetylase sir-2.1/SIRT1 exacerbated muscle pathology, an effect dependent on the transcription factor daf-16/FoxO and fuel sensor aak-2/AMPK (AMP-activated protein kinase), while null mutants of sir-2.1, daf-16 and aak-2 were protective. Consistently, the Sir2 inhibitor sirtinol was protective, whereas the Sir2 and AMPK activator resveratrol was detrimental. Furthermore, rescue by sirtinol was dependent on daf-16 and not aak-2, whereas aggravation by resveratrol was dependent on aak-2 and not daf-16. Finally, the survival of mammalian cells expressing mutant PABPN1 was promoted by sirtinol and decreased by resveratrol. Altogether, our data identify Sir2 and AMPK inhibition as therapeutic strategies for muscle protection in OPMD, extending the value of druggable proteins in cell maintenance networks to polyalanine diseases.


Subject(s)
Caenorhabditis elegans/metabolism , Muscular Dystrophy, Oculopharyngeal/therapy , Peptide Initiation Factors/metabolism , Peptides/metabolism , RNA-Binding Proteins/metabolism , Sirtuins/metabolism , AMP-Activated Protein Kinases , Acetylation , Animals , Animals, Genetically Modified , Benzamides/pharmacology , COS Cells , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Survival , Chlorocebus aethiops , Forkhead Transcription Factors , Gene Expression Regulation , Genes, Reporter , Histones/metabolism , Humans , Multienzyme Complexes , Muscles/metabolism , Muscles/physiopathology , Muscular Dystrophy, Oculopharyngeal/metabolism , Muscular Dystrophy, Oculopharyngeal/physiopathology , Naphthols/pharmacology , Peptide Initiation Factors/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA-Binding Proteins/genetics , Resveratrol , Sirtuins/antagonists & inhibitors , Sirtuins/genetics , Sirtuins/pharmacology , Stilbenes/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Nat Genet ; 37(4): 349-50, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15793589

ABSTRACT

We report that Sir2 activation through increased sir-2.1 dosage or treatment with the sirtuin activator resveratrol specifically rescued early neuronal dysfunction phenotypes induced by mutant polyglutamines in transgenic Caenorhabditis elegans. These effects are dependent on daf-16 (Forkhead). Additionally, resveratrol rescued mutant polyglutamine-specific cell death in neuronal cells derived from HdhQ111 knock-in mice. We conclude that Sir2 activation may protect against mutant polyglutamines.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Membrane Glycoproteins/physiology , Membrane Transport Proteins/physiology , Nerve Tissue Proteins/physiology , Neurons/physiology , Peptides/toxicity , Sirtuins/metabolism , Stilbenes/pharmacology , Transcription Factors/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Forkhead Transcription Factors , Homozygote , Membrane Glycoproteins/genetics , Membrane Transport Proteins/genetics , Mice , Mice, Mutant Strains , Nerve Tissue Proteins/genetics , Neurons/cytology , Resveratrol , Serotonin Plasma Membrane Transport Proteins , Sirtuins/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...