Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 67(2): 643-7, 1989 Aug.
Article in English | MEDLINE | ID: mdl-2507499

ABSTRACT

Periods of apnea are relatively common in newborns but rare in older infants. Postnatal changes in the response of the central neural respiratory circuits to afferent inputs may have a role in the age-related incidence of apnea. Therefore we determined the central neural apneic threshold to CO2 and superior laryngeal nerve (SLN) stimulation in halothane-anesthetized newborn (4- to 7-day-old) and older (45- to 56-day-old) lambs. The animals were vagotomized, paralyzed, and mechanically ventilated with hyperoxic gas. Phrenic nerve activity served as a monitor of central respiratory output. The CO2 and SLN apneic thresholds were defined as the arterial PCO2 when phrenic activity began after hyperventilation, and the quantity of current applied to the SLN that abolished phrenic activity, respectively. At equivalent concentrations of halothane, newborn lambs had higher CO2 apneic thresholds (P less than 0.05) and lower SLN apneic thresholds (P less than 0.05) than did older lambs. Increasing concentrations of halothane decreased (P less than 0.05) the SLN apneic threshold and increased (P less than 0.05) the CO2 apneic threshold. Equal incremental changes in halothane concentration induced similar changes in the apneic thresholds of both ages of lambs. The data suggest that with maturation, the central neural respiratory circuits become more responsive to CO2 and less responsive to SLN afferents. Halothane alters central neural responsiveness to these inputs in both ages similarly.


Subject(s)
Aging/metabolism , Halothane/pharmacology , Laryngeal Nerves/physiology , Respiratory Physiological Phenomena , Anesthesia , Animals , Carbon Dioxide/metabolism , Respiration/drug effects , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...