Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Chem ; 50(3): 550-65, 2007 Feb 08.
Article in English | MEDLINE | ID: mdl-17266207

ABSTRACT

Recently we reported on the design and synthesis of a novel class of selective nonpeptide bradykinin (BK) B2 receptor antagonists (J. Med. Chem. 2006, 3602-3613). This work led to the discovery of MEN 15442, an antagonist with subnanomolar affinity for the human B2 receptor (hB2R), which also displayed significant and prolonged activity in vivo (for up to 210 min) against BK-induced bronchoconstriction in the guinea-pig at a dose of 300 nmol/kg (it), while demonstrating only a slight effect on BK-induced hypotension. Here we describe the further optimization of this series of compounds aimed at maximizing the effect on bronchoconstriction and minimizing the effect on hypotension, with a view to developing topically delivered drugs for airway diseases. The work led to the discovery of MEN 16132, a compound which, after intratracheal or aerosol administration, inhibited, in a dose-dependent manner, BK-induced bronchoconstricton in the airways, while showing minimal systemic activity. This compound was selected as a preclinical candidate for the topical treatment of airway diseases involving kinin B2 receptor stimulation.


Subject(s)
Bradykinin B2 Receptor Antagonists , Bronchodilator Agents/chemical synthesis , Ornithine/analogs & derivatives , Sulfonamides/chemical synthesis , Animals , Blood Pressure/drug effects , Bronchoconstriction/drug effects , Bronchodilator Agents/chemistry , Bronchodilator Agents/pharmacology , CHO Cells , Cricetinae , Cricetulus , Drug Design , Guinea Pigs , Humans , Ileum/drug effects , Ileum/physiology , In Vitro Techniques , Inositol Phosphates/biosynthesis , Male , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Ornithine/chemical synthesis , Ornithine/chemistry , Ornithine/pharmacology , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
2.
J Med Chem ; 49(12): 3602-13, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16759102

ABSTRACT

We recently published the extensive in vivo pharmacological characterization of MEN 16132 (J. Pharmacol. Exp. Ther. 2005, 616-623; Eur. J. Pharmacol. 2005, 528, 7), a member of the sulfonamide-containing human B(2) receptor (hB(2)R) antagonists. Here we report, in detail, how this family of compounds was designed, synthesized, and optimized to provide a group of products with subnanomolar affinity for the hB(2)R and high in vivo potency after topical administration to the respiratory tract. The series was designed on the basis of indications from the X-ray structures of the key structural motifs A and B present in known antagonists and is characterized by the presence of an alpha,alpha-dialkyl amino acid. The first lead (17) of the series was submitted to extensive chemical work to elucidate the structural requirements to increase hB(2) receptor affinity and antagonist potency in bioassays expressing the human B(2) receptor (hB(2)R). The following structural features were selected: a 2,4-dimethylquinoline moiety and a piperazine linker acylated with a basic amino acid. The representative lead compound 68 inhibited the specific binding of [(3)H]BK to hB(2)R with a pKi of 9.4 and antagonized the BK-induced inositolphosphate (IP) accumulation in recombinant cell systems expressing the hB(2)R with a pA(2) of 9.1. Moreover, compound 68 when administered (300 nmol/kg) intratracheally in the anesthetized guinea pig, was able to significantly inhibit BK-induced bronchoconstriction for up to 120 min after its administration, while having a lower and shorter lasting effect on hypotension.


Subject(s)
Bradykinin B2 Receptor Antagonists , Quinolines/chemical synthesis , Sarcosine/analogs & derivatives , Sulfonamides/chemical synthesis , Animals , Bradykinin/metabolism , Bronchoconstrictor Agents/chemical synthesis , Bronchoconstrictor Agents/chemistry , Bronchoconstrictor Agents/pharmacology , CHO Cells , Cricetinae , Cricetulus , Crystallography, X-Ray , Drug Design , Guinea Pigs , Humans , Hypotension/chemically induced , Inositol Phosphates/biosynthesis , Models, Molecular , Molecular Structure , Piperazine , Piperazines/chemistry , Quinolines/chemistry , Quinolines/pharmacology , Radioligand Assay , Receptor, Bradykinin B2/metabolism , Sarcosine/chemical synthesis , Sarcosine/chemistry , Sarcosine/pharmacology , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL