Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Med Syst ; 48(1): 29, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441727

ABSTRACT

Schizophrenia is a serious chronic mental disorder that significantly affects daily life. Electroencephalography (EEG), a method used to measure mental activities in the brain, is among the techniques employed in the diagnosis of schizophrenia. The symptoms of the disease typically begin in childhood and become more pronounced as one grows older. However, it can be managed with specific treatments. Computer-aided methods can be used to achieve an early diagnosis of this illness. In this study, various machine learning algorithms and the emerging technology of quantum-based machine learning algorithm were used to detect schizophrenia using EEG signals. The principal component analysis (PCA) method was applied to process the obtained data in quantum systems. The data, which were reduced in dimensionality, were transformed into qubit form using various feature maps and provided as input to the Quantum Support Vector Machine (QSVM) algorithm. Thus, the QSVM algorithm was applied using different qubit numbers and different circuits in addition to classical machine learning algorithms. All analyses were conducted in the simulator environment of the IBM Quantum Platform. In the classification of this EEG dataset, it is evident that the QSVM algorithm demonstrated superior performance with a 100% success rate when using Pauli X and Pauli Z feature maps. This study serves as proof that quantum machine learning algorithms can be effectively utilized in the field of healthcare.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnosis , Algorithms , Brain , Electroencephalography , Machine Learning
2.
Brain Sci ; 13(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36831846

ABSTRACT

Low transfer rates are a major bottleneck for brain-computer interfaces based on electroencephalography (EEG). This problem has led to the development of more robust and accurate classifiers. In this study, we investigated the performance of variational quantum, quantum-enhanced support vector, and hypergraph case-based reasoning classifiers in the binary classification of EEG data from a P300 experiment. On the one hand, quantum classification is a promising technology to reduce computational time and improve learning outcomes. On the other hand, case-based reasoning has an excellent potential to simplify the preprocessing steps of EEG analysis. We found that the balanced training (prediction) accuracy of each of these three classifiers was 56.95 (51.83), 83.17 (50.25), and 71.10% (52.04%), respectively. In addition, case-based reasoning performed significantly lower with a simplified (49.78%) preprocessing pipeline. These results demonstrated that all classifiers were able to learn from the data and that quantum classification of EEG data was implementable; however, more research is required to enable a greater prediction accuracy because none of the classifiers were able to generalize from the data. This could be achieved by improving the configuration of the quantum classifiers (e.g., increasing the number of shots) and increasing the number of trials for hypergraph case-based reasoning classifiers through transfer learning.

SELECTION OF CITATIONS
SEARCH DETAIL
...