Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37958124

ABSTRACT

The aim of the present study was to test synthetic flavors as potential feed attractants in zebrafish (Danio rerio) during early development. Six experimental groups were set up in triplicate: (i) a CTRL group fed a zebrafish commercial diet; (ii) a PG group fed a control diet added with Propylene Glycol (PG); (iii) A1+ and A2+ groups fed a control diet added with 1% of the two attractive flavors (A1+ cheese odor made by mixing Propylene Glycol (PG) with the aromatic chemicals trimethyamine, 2-acetylpyrazine, 2-acetylpyridine, and dimethyl sulfide; and A2+ caramel odor, made of PG mixed with the aromatic chemicals vanillin, maltol, cyclotene, acetoin, butyric acid, and capric acid with traces of both gamma-octalactone and gamma-esalactone) or the repulsive flavor (A- coconut odor, made by mixing PG with the aromatic chemicals gamma-eptalactone, gamma-nonalactone, delta-esalactone, and vanillin with trace of both delta-octalactone and maltol), respectively; (iv) an ROT group fed the two attractive diets, each administered singularly in a weekly rotation scheme. All the tested synthetic flavors did not affect the overall health of larval and juvenile fish and promoted growth. Due to the longer exposure time, results obtained from the juvenile stage provided a clearer picture of the fish responses: zebrafish fed both attractive diets showed higher appetite stimulus, feed ingestion, and growth, while the brain dopaminergic activity suggested the A2+ diet as the most valuable solution for its long-lasting effect over the whole experiment (60-day feeding trial, from larvae to adults). The present study provided important results about the possible use of attractive synthetic flavors for aquafeed production, opening new sustainable and more economically valuable opportunities for the aquaculture sector.

2.
Animals (Basel) ; 13(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37508033

ABSTRACT

One of the main sources of MPs contamination in fish farms is aquafeed. The present study investigated, for the first time through a comparative approach, the effects of different-sized fluorescent MPs included in a diet intended for zebrafish (Danio rerio). A comparison based on fish developmental stage (larval vs. juvenile), exposure time, and dietary MPs' size and concentration was performed. Four experimental diets were formulated, starting from the control, by adding fluorescent polymer A (size range 1-5 µm) and B (size range 40-47 µm) at two different concentrations (50 and 500 mg/kg). Zebrafish were sampled at 20 (larval phase) and 60 dpf (juvenile stage). Whole larvae, intestine, liver and muscles of juveniles were collected for the analyses. Polymer A was absorbed at the intestinal level in both larvae and juveniles, while it was evidenced at the hepatic and muscular levels only in juveniles. Hepatic accumulation caused an increase in oxidative stress markers in juveniles, but at the same time significantly reduced the number of MPs able to reach the muscle, representing an efficient barrier against the spread of MPs. Polymer B simply transited through the gut, causing an abrasive effect and an increase in goblet cell abundance in both stages.

SELECTION OF CITATIONS
SEARCH DETAIL
...