Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Theriogenology ; 211: 241-247, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37677868

ABSTRACT

Glucocorticoids (GCs) act through their receptor (GR) as regulators in different biological processes such as reproduction. In the absence of GCs, the GR remains inactive in the cytoplasm by associating with heat shock proteins (HSPs), which act as molecular chaperones, among which the most relevant are HSP90 and HSP70. Cytoplasmic GC-activated GR mediates non-genomic effects, interacting with members of signaling pathways such as PI3K/Akt, which participates in several metabolic processes, including the insulin signaling pathway. The aim of the present study was to evaluate possible associations between the cytoplasmic GR and the main intermediates of the insulin signaling pathway and HSP90 and HSP70 in ovaries of dairy cows. To this end, the protein expression of cytoplasmic GR, key members of the insulin signaling pathway, and HSPs was evaluated in ovarian preovulatory follicles of non-lactating Holstein cows in proestrus. Positive associations were observed between protein expression of GR and HSP90, IRS1, pIRS1, PI3K and pAkt (p < 0.05; ß > 0) in granulosa cells of dominant follicles of dairy cows. Instead, in theca cells, no associations were observed between protein expression of GR and members of the insulin signaling pathway or HSPs. These data provide evidence of the possible association between the non-genomic mechanisms of action of the GR and the insulin signaling pathway in the bovine ovary.


Subject(s)
Glucocorticoids , Receptors, Glucocorticoid , Female , Animals , Cattle , Receptors, Glucocorticoid/genetics , Heat-Shock Proteins/genetics , Insulin , Ovary , Phosphatidylinositol 3-Kinases , HSP70 Heat-Shock Proteins , Signal Transduction
2.
Theriogenology ; 197: 209-223, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36525860

ABSTRACT

The alteration of signaling molecules involved in the general metabolism of animals can negatively influence reproduction. In dairy cattle, the development of follicular cysts and the subsequent appearance of ovarian cystic disease (COD) often lead to decreased reproductive efficiency in the herd. The objective of this review is to summarize the contribution of relevant metabolic and nutritional sensors to the development of COD in dairy cows. In particular, we focus on the study of alterations of the insulin signaling pathway, adiponectin, and other sensors and metabolites relevant to ovarian functionality, which may be related to the development of follicular persistence and follicular formation of cysts in dairy cattle. The results of these studies support the hypothesis that systemic factors could alter the local scenario in the follicle, generating an adverse microenvironment for the resumption of ovarian activity and possibly leading to the persistence of follicles and to the development and recurrence of COD.


Subject(s)
Cattle Diseases , Ovarian Cysts , Female , Cattle , Animals , Ovarian Cysts/veterinary , Ovarian Cysts/metabolism , Ovarian Follicle/metabolism , Reproduction , Insulin/metabolism , Cattle Diseases/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...