Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073924

ABSTRACT

Gaucher disease (GD) is an autosomal recessive lysosomal disorder due to beta-glucosidase gene (GBA) mutations. The molecular diagnosis of GD is complicated by the presence of recombinant alleles originating from a highly homologous pseudogene. Clinical exome sequencing (CES) is a rapid genetic approach for identifying disease-causing mutations. However, copy number variation and recombination events are poorly detected, and further investigations are required to avoid mis-genotyping. The aim of this work was to set-up an integrated strategy for GD patients genotyping using CES as a first-line test. Eight patients diagnosed with GD were analyzed by CES. Five patients were fully genotyped, while three were revealed to be homozygous for mutations that were not confirmed in the parents. Therefore, MLPA (multiplex ligation-dependent probe amplification) and specific long-range PCR were performed, and two recombinant alleles, one of them novel, and one large deletion were identified. Furthermore, an MLPA assay performed in one family resulted in the identification of an additional novel mutation (p.M124V) in a relative, in trans with the known p.N409S mutation. In conclusion, even though CES has become extensively used in clinical practice, our study emphasizes the importance of a comprehensive molecular strategy to provide proper GBA genotyping and genetic counseling.


Subject(s)
Exome/genetics , Gaucher Disease/diagnosis , Multiplex Polymerase Chain Reaction/methods , beta-Glucosidase/genetics , Alleles , DNA Copy Number Variations , Family , Female , Gaucher Disease/genetics , Genotype , HEK293 Cells , Homozygote , Humans , Male , Mutation , Pedigree
2.
Dis Markers ; 2020: 8869424, 2020.
Article in English | MEDLINE | ID: mdl-33343767

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has rapidly spread worldwide from the beginning of 2020. The presence of viral RNA in samples by nucleic acid (NA) molecular analysis is the only method available to diagnose COVID-19 disease and to assess patients' viral load. Since the demand for laboratory reagents has increased, there has been a worldwide shortage of RNA extraction kits. We, therefore, developed a fast and cost-effective viral genome isolation method that, combined with quantitative RT-PCR assay, detects SARS-CoV-2 RNA in patient samples. The method relies on the addition of Proteinase K followed by a controlled heat-shock incubation and, then, E gene evaluation by RT-qPCR. It was validated for sensitivity, specificity, linearity, reproducibility, and precision. It detects as low as 10 viral copies/sample, is rapid, and has been characterized in 60 COVID-19-infected patients. Compared to automated extraction methods, our pretreatment guarantees the same positivity rate with the advantage of shortening the time of the analysis and reducing its cost. This is a rapid workflow meant to aid the healthcare system in the rapid identification of infected patients, such as during a pathogen-related outbreak. For its intrinsic characteristics, this workflow is suitable for large-scale screenings.


Subject(s)
COVID-19 Testing/methods , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Coronavirus Envelope Proteins/genetics , Humans , Limit of Detection , Nasopharynx/virology , Sensitivity and Specificity , Workflow
3.
J Clin Med ; 9(3)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138288

ABSTRACT

Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disorder caused by mutations in NPC1 or NPC2 genes. In 2009, the molecular characterization of 44 NPC Italian patients has been published. Here, we present an update of the genetic findings in 105 Italian NPC patients belonging to 83 unrelated families (77 NPC1 and 6 NPC2). NPC1 and NPC2 genes were studied following an algorithm recently published. Eighty-four different NPC1 and five NPC2 alleles were identified. Only two NPC1 alleles remained non detected. Sixty-two percent of NPC1 alleles were due to missense variants. The most frequent NPC1 mutation was the p.F284Lfs*26 (5.8% of the alleles). All NPC2 mutations were found in the homozygous state, and all but one was severe. Among newly diagnosed patients, 18 novel NPC1 mutations were identified. The pathogenic nature of 7/9 missense alleles and 3/4 intronic variants was confirmed by filipin staining and NPC1 protein analysis or mRNA expression in patient's fibroblasts. Taken together, our previous published data and new results provide an overall picture of the molecular characteristics of NPC patients diagnosed so far in Italy.

4.
J Mol Diagn ; 19(5): 733-741, 2017 09.
Article in English | MEDLINE | ID: mdl-28727984

ABSTRACT

Mutations in the gene encoding the lysosomal enzyme acid ß-glucosidase (GBA) are responsible for Gaucher disease and represent the main genetic risk factor for developing Parkinson disease. In past years, next-generation sequencing (NGS) technology has been applied for the molecular analysis of the GBA gene, both as a single gene or as part of gene panels. However, the presence of complex gene-pseudogene rearrangements, resulting from the presence of a highly homologous pseudogene (GBAP1) located downstream of the GBA gene, makes NGS analysis of GBA challenging. Therefore, adequate strategies should be adopted to avoid misdetection of GBA recombinant mutations. Here, we validated a strategy for the identification of GBA mutations using parallel massive sequencing and provide an overview of the major drawbacks encountered during GBA analysis by NGS. We implemented a NGS workflow, using a set of 38 patients with Gaucher disease carrying different GBA alleles identified previously by Sanger sequencing. As expected, the presence of the pseudogene significantly affected data output. However, the combination of specific procedures for the library preparation and data analysis resulted in maximal repeatability and reproducibility, and a robust performance with 97% sensitivity and 100% specificity. In conclusion, the pipeline described here represents a useful approach to deal with GBA sequencing using NGS technology.


Subject(s)
Gaucher Disease/diagnosis , Gaucher Disease/genetics , Glucosylceramidase/genetics , High-Throughput Nucleotide Sequencing , Alleles , Computational Biology , DNA Mutational Analysis/methods , DNA Mutational Analysis/standards , Exons , High-Throughput Nucleotide Sequencing/methods , Humans , Introns , Mutation , Reproducibility of Results , Sensitivity and Specificity , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards
5.
Neuromuscul Disord ; 27(6): 542-549, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28433478

ABSTRACT

Exercise intolerance is one of the clinical hallmarks of late-onset Pompe disease (LOPD). We studied the acute effects of ERT on the physiological variables associated with exercise tolerance in patients chronically ERT treated. Moreover, we assessed the influence of clinical severity on the investigated variables. The day before (B) and the day after (A) ERT injection, 11 LOPD patients performed on a cycle-ergometer an exercise tolerance test to voluntary exhaustion; VO2, HR, RPE, and GAA activity were determined in B and A. The disease severity was characterized by Walton scale, 6MWT, and pulmonary function tests. No significant differences in the variables related to exercise tolerance were found in A vs B, despite a significant increase in GAA activity in peripheral lymphocytes. No differences in VO2 peak were observed between patients with only skeletal muscle impairment and patients with both skeletal and respiratory muscle impairment. Distance walked at 6MWT was significantly higher than VO2 peak expressed as percentage of normal values. In conclusion, in LOPD patients the exercise tolerance test is not acutely affected by ERT administration; the peripheral muscle component seems more prominent in determining the VO2 peak decrease than the respiratory component; VO2 peak might be more sensitive than 6MWT in estimating exercise tolerance in LOPD.


Subject(s)
Enzyme Replacement Therapy , Exercise Tolerance/drug effects , Glycogen Storage Disease Type II/drug therapy , Glycogen Storage Disease Type II/physiopathology , alpha-Glucosidases/therapeutic use , Adolescent , Adult , Exercise Test , Female , Humans , Male , Middle Aged , Severity of Illness Index , Treatment Outcome , Young Adult
6.
PLoS One ; 7(7): e41516, 2012.
Article in English | MEDLINE | ID: mdl-22848519

ABSTRACT

Sandhoff disease (SD) is a lysosomal disorder caused by mutations in the HEXB gene. To date, 43 mutations of HEXB have been described, including 3 large deletions. Here, we have characterized 14 unrelated SD patients and developed a Multiplex Ligation-dependent Probe Amplification (MLPA) assay to investigate the presence of large HEXB deletions. Overall, we identified 16 alleles, 9 of which were novel, including 4 sequence variation leading to aminoacid changes [c.626C>T (p.T209I), c.634C>A (p.H212N), c.926G>T (p.C309F), c.1451G>A (p.G484E)] 3 intronic mutations (c.1082+5G>A, c.1242+1G>A, c.1169+5G>A), 1 nonsense mutation c.146C>A (p.S49X) and 1 small in-frame deletion c.1260_1265delAGTTGA (p.V421_E422del). Using the new MLPA assay, 2 previously described deletions were identified. In vitro expression studies showed that proteins bearing aminoacid changes p.T209I and p.G484E presented a very low or absent activity, while proteins bearing the p.H212N and p.C309F changes retained a significant residual activity. The detrimental effect of the 3 novel intronic mutations on the HEXB mRNA processing was demonstrated using a minigene assay. Unprecedentedly, minigene studies revealed the presence of a novel alternative spliced HEXB mRNA variant also present in normal cells. In conclusion, we provided new insights into the molecular basis of SD and validated an MLPA assay for detecting large HEXB deletions.


Subject(s)
Alternative Splicing/genetics , Base Sequence , Sandhoff Disease/genetics , Sequence Deletion , beta-Hexosaminidase beta Chain/genetics , Female , HEK293 Cells , Humans , Male , Multiplex Polymerase Chain Reaction , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Sandhoff Disease/metabolism , beta-Hexosaminidase beta Chain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...