Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 18(1): 200-214, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37782619

ABSTRACT

In this article, three different implementations of an Axon-Hillock circuit are presented, one of the basic building blocks of spiking neural networks. In this work, we explored the design of such circuits using a unipolar thin-film transistor technology based on amorphous InGaZnO, often used for large-area electronics. All the designed circuits are fabricated by direct material deposition and patterning on top of a flexible polyimide substrate. Axon-Hillock circuits presented in this article consistently show great adaptability of the basic properties of a spiking neuron such as output spike frequency adaptation and output spike width adaptation. Additional degrees of adaptability are demonstrated with each of the Axon-Hillock circuit varieties: neuron circuit threshold voltage adaptation, differentiation between input signal importance, and refractory period modulation. The proposed neuron can change its firing frequency up to three orders of magnitude by varying a single voltage brought to a circuit terminal. This allows the neuron to function, and potentially learn, at vastly different timescales that coincide with the biologically meaningful timescales, going from milliseconds to seconds, relevant for circuits meant for interaction with the environment. Thanks to careful design choices, the average measured power consumption is kept in the nW range, realistically allowing upscaling towards the spiking neural networks in the future. The spiking neuron with refractory period modulation presented in this work has an area of 607.3 µm × 492.2 µm, it experimentally demonstrated firing rates as low as 11.926 mHz, and its energy consumption per spike is ≈ 700 pJ at 30 Hz.


Subject(s)
Models, Neurological , Neurons , Neurons/physiology , Neural Networks, Computer
2.
IEEE Trans Neural Netw Learn Syst ; 34(6): 2869-2881, 2023 06.
Article in English | MEDLINE | ID: mdl-34520371

ABSTRACT

Event-based neural networks are currently being explored as efficient solutions for performing AI tasks at the extreme edge. To fully exploit their potential, event-based neural networks coupled to adequate preprocessing must be investigated. Within this context, we demonstrate a 4-b-weight spiking neural network (SNN) for radar gesture recognition, achieving a state-of-the-art 93% accuracy within only four processing time steps while using only one convolutional layer and two fully connected layers. This solution consumes very little energy and area if implemented in event-based hardware, which makes it suited for embedded extreme-edge applications. In addition, we demonstrate the importance of signal preprocessing for achieving this high recognition accuracy in SNNs compared to deep neural networks (DNNs) with the same network topology and training strategy. We show that efficient preprocessing prior to the neural network is drastically more important for SNNs compared to DNNs. We also demonstrate, for the first time, that the preprocessing parameters can affect SNNs and DNNs in antagonistic ways, prohibiting the generalization of conclusions drawn from DNN design to SNNs. We demonstrate our findings by comparing the gesture recognition accuracy achieved with our SNN to a DNN with the same architecture and similar training. Unlike previously proposed neural networks for radar processing, this work enables ultralow-power radar-based gesture recognition for extreme-edge devices.


Subject(s)
Gestures , Neural Networks, Computer , Radar , Generalization, Psychological , Recognition, Psychology
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3257-3260, 2022 07.
Article in English | MEDLINE | ID: mdl-36085642

ABSTRACT

Wearable bioimpedance is a technique proposed to estimate breathing parameters such as respiratory rate (RR). However, its potential application lies in clinical investigation of daily-life activities like walking. This study evaluated the effect of the walking interference on the estimation of breathing parameters. 50 chronic obstructive pulmonary disease patients performed static and active measurements during thoracic bioimpedance acquisition. The static measurements included respiratory airflow for reference. The active measurements were used to estimate the walking interference from bioimpedance, and the obtained signals were added to static measurements for comparison with the reference. Afterward, we applied four different preprocessing methods to remove this walking interference and the resulting signals were used to detect the respiratory cycles and estimate breathing parameters (inspiratory time, expiratory time, duty cycle, and RR). The methods performed differently in terms of accuracy and mean average percentage error (MAPE), showing the need for specific preprocessing for active measurements. Furthermore, the MAPE values in the RR estimation were close to 3 % indicating that breathing parameters can be accurately estimated during walking. Accordingly, the present study reinforces the applicability of wearable bioimpedance for respiratory monitoring. Clinical relevance- This study exhibits the suitability of wearable bioimpedance to estimate accurate breathing param-eters during walking activities.


Subject(s)
Algorithms , Wearable Electronic Devices , Humans , Monitoring, Physiologic/methods , Respiration , Walking
4.
IEEE J Biomed Health Inform ; 26(12): 5983-5991, 2022 12.
Article in English | MEDLINE | ID: mdl-36121947

ABSTRACT

Breathing pattern has been shown to be different in chronic obstructive pulmonary disease (COPD) patients compared to healthy controls during rest and walking. In this study we evaluated respiratory parameters and the breathing variability of COPD patients as a function of their severity. Thoracic bioimpedance was acquired on 66 COPD patients during the performance of the six-minute walk test (6MWT), as well as 5 minutes before and after the test while the patients were seated, i.e. resting and recovery phases. The patients were classified by their level of airflow limitation into moderate and severe groups. We characterized the breathing patterns by evaluating common respiratory parameters using only wearable bioimpedance. Specifically, we computed the median and the coefficient of variation of the parameters during the three phases of the protocol, and evaluated the statistical differences between the two COPD severity groups. We observed significant differences between the COPD severity groups only during the sitting phases, whereas the behavior during the 6MWT was similar. Particularly, we observed an inverse relationship between breathing pattern variability and COPD severity, which may indicate that the most severely diseased patients had a more restricted breathing compared to the moderate patients.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Wearable Electronic Devices , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Lung , Respiration , Walk Test
5.
Comput Methods Programs Biomed ; 225: 107020, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35905697

ABSTRACT

BACKGROUND AND OBJECTIVE: Chronic obstructive pulmonary disease (COPD) requires a multifactorial assessment, evaluating the airflow limitation and symptoms of the patients. The 6-min walk test (6MWT) is commonly used to evaluate the functional exercise capacity in these patients. This study aims to propose a novel predictive model of the major 6MWT outcomes for COPD assessment, without physical performance measurements. METHODS: Cardiopulmonary and clinical parameters were obtained from fifty COPD patients. These parameters were used as inputs of a Bayesian network (BN), which integrated three multivariate models including the 6-min walking distance (6MWD), the maximum HR (HRmax) after the walking, and the HR decay 3 min after (HRR3). The use of BN allows the assessment of the patients' status by predicting the 6MWT outcomes, but also inferring disease severity parameters based on actual patient's 6MWT outcomes. RESULTS: Firstly, the correlation obtained between the estimated and actual 6MWT measures was strong (R = 0.84, MAPE = 8.10% for HRmax) and moderate (R = 0.58, MAPE = 15.43% for 6MWD and R = 0.58, MAPE = 32.49% for HRR3), improving the classical methods to estimate 6MWD. Secondly, the classification of disease severity showed an accuracy of 78.3% using three severity groups, which increased up to 84.4% for two defined severity groups. CONCLUSIONS: We propose a powerful two-way assessment tool for COPD patients, capable of predicting 6MWT outcomes without the need for an actual walking exercise. This model-based tool opens the way to implement a continuous monitoring system for COPD patients at home and to provide more personalized care.


Subject(s)
Exercise Tolerance , Pulmonary Disease, Chronic Obstructive , Bayes Theorem , Exercise Test/methods , Humans , Physical Functional Performance , Pulmonary Disease, Chronic Obstructive/diagnosis , Walking
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1068-1071, 2021 11.
Article in English | MEDLINE | ID: mdl-34891472

ABSTRACT

Continuous and non-invasive cardiovascular monitoring has gained attention due to the miniaturization of wearable devices. Particularly, wrist-worn photoplethysmography (PPG) sensors present an alternative to electrocardiogram recording for heart rate (HR) monitoring as it is cheaper and non-intrusive for daily activities. Yet, the accuracy of PPG measurements is heavily affected by motion artifacts which are inherent to ambulatory environments. In this paper, we propose a low-complexity LSTM-only neural network for HR estimation from a single PPG channel during intense physical activity. This work explored the trade-off between model complexity and accuracy by exploring different model dataflows, number of layers, and number of training epochs to capture the intrinsic time-dependency between PPG samples. The best model achieves a mean absolute error of 4.47 ± 3.68 bpm when evaluated on 12 IEEE SPC subjects.Clinical relevance- This work aims to improve the quality of HR inference from PPG signals using neural network, enabling continuous vital signal monitoring with little interference in daily activities from embedded monitoring devices.


Subject(s)
Photoplethysmography , Wrist , Algorithms , Heart Rate , Humans , Signal Processing, Computer-Assisted
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5508-5511, 2021 11.
Article in English | MEDLINE | ID: mdl-34892372

ABSTRACT

Many studies have focused on novel noninvasive techniques to monitor respiratory rate such as bioimpedance. We propose an algorithm to detect respiratory phases using wearable bioimpedance to compute time parameters like respiratory rate, inspiratory and expiratory times, and duty cycle. The proposed algorithm was compared with two other algorithms from literature designed to estimate the respiratory rate using physiological signals like bioimpedance. We acquired bioimpedance and airflow from 50 chronic obstructive pulmonary disease (COPD) patients during an inspiratory loading protocol. We compared performance of the algorithms by computing accuracy and mean average percentage error (MAPE) between the bioimpedance parameters and the reference parameters from airflow. We found similar performance for the three algorithms in terms of accuracy (>0.96) and respiratory time and rate errors (<3.42 %). However, the proposed algorithm showed lower MAPE in duty cycle (10.18 %), inspiratory time (10.65 %) and expiratory time (8.61 %). Furthermore, only the proposed algorithm kept the statistical differences in duty cycle between COPD severity levels that were observed using airflow. Accordingly, we suggest bioimpedance to monitor breathing pattern parameters in home situations.Clinical relevance- This study exhibits the suitability of wearable thoracic bioimpedance to detect respiratory phases and to compute accurate breathing pattern parameters.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Wearable Electronic Devices , Algorithms , Humans , Lung , Pulmonary Disease, Chronic Obstructive/diagnosis , Respiratory Rate
8.
IEEE Trans Biomed Eng ; 68(1): 298-307, 2021 01.
Article in English | MEDLINE | ID: mdl-32746014

ABSTRACT

Chronic Obstructive Pulmonary Disease (COPD) is one of the most common chronic conditions. The current assessment of COPD requires a maximal maneuver during a spirometry test to quantify airflow limitations of patients. Other less invasive measurements such as thoracic bioimpedance and myographic signals have been studied as an alternative to classical methods as they provide information about respiration. Particularly, strong correlations have been shown between thoracic bioimpedance and respiratory volume. The main objective of this study is to investigate bioimpedance and its combination with myographic parameters in COPD patients to assess the applicability in respiratory disease monitoring. We measured bioimpedance, surface electromyography and surface mechanomyography in forty-three COPD patients during an incremental inspiratory threshold loading protocol. We introduced two novel features that can be used to assess COPD condition derived from the variation of bioimpedance and the electrical and mechanical activity during each respiratory cycle. These features demonstrate significant differences between mild and severe patients, indicating a lower inspiratory contribution of the inspiratory muscles to global respiratory ventilation in the severest COPD patients. In conclusion, the combination of bioimpedance and myographic signals provides useful indices to noninvasively assess the breathing of COPD patients.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Respiratory Muscles , Humans , Lung Volume Measurements , Pulmonary Disease, Chronic Obstructive/diagnosis , Respiration , Spirometry
9.
Sci Rep ; 9(1): 20232, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882841

ABSTRACT

Bioimpedance has been widely studied as alternative to respiratory monitoring methods because of its linear relationship with respiratory volume during normal breathing. However, other body tissues and fluids contribute to the bioimpedance measurement. The objective of this study is to investigate the relevance of chest movement in thoracic bioimpedance contributions to evaluate the applicability of bioimpedance for respiratory monitoring. We measured airflow, bioimpedance at four electrode configurations and thoracic accelerometer data in 10 healthy subjects during inspiratory loading. This protocol permitted us to study the contributions during different levels of inspiratory muscle activity. We used chest movement and volume signals to characterize the bioimpedance signal using linear mixed-effect models and neural networks for each subject and level of muscle activity. The performance was evaluated using the Mean Average Percentage Errors for each respiratory cycle. The lowest errors corresponded to the combination of chest movement and volume for both linear models and neural networks. Particularly, neural networks presented lower errors (median below 4.29%). At high levels of muscle activity, the differences in model performance indicated an increased contribution of chest movement to the bioimpedance signal. Accordingly, chest movement contributed substantially to bioimpedance measurement and more notably at high muscle activity levels.


Subject(s)
Cardiography, Impedance/methods , Electric Impedance , Lung Volume Measurements/methods , Respiration , Thorax/physiology , Adult , Algorithms , Female , Humans , Male , Models, Cardiovascular , Movement/physiology , Respiratory Mechanics/physiology , Respiratory Muscles/physiology , Young Adult
10.
Sensors (Basel) ; 19(10)2019 May 16.
Article in English | MEDLINE | ID: mdl-31100795

ABSTRACT

Nanostructured materials have attracted considerable interest over the last few decades to enhance sensing capabilities thanks to their unique properties and large surface area. In particular, noble metal nanostructures offer several advantages including high stability, non-toxicity and excellent electrochemical behaviour. However, in recent years the great expansion of point-of-care (POC) and wearable systems and the attempt to perform measurements in tiny spaces have also risen the need of increasing sensors miniaturization. Fast constant potential electrodeposition techniques have been proven to be an efficient way to obtain conformal platinum and gold nanostructured layers on macro-electrodes. However, this technique is not effective on micro-electrodes. In this paper, we investigate an alternative one-step deposition technique of platinum nanoflowers on micro-electrodes by linear sweep voltammetry (LSV). The effective deposition of platinum nanoflowers with similar properties to the ones deposited on macro-electrodes is confirmed by morphological analysis and by the similar roughness factor (~200) and capacitance (~18 µ F/mm 2 ). The electrochemical behaviour of the nanostructured layer is then tested in an solid-contact (SC) L i + -selective micro-electrode and compared to the case of macro-electrodes. The sensor offers Nernstian calibration with same response time (~15 s) and a one-order of magnitude smaller limit of detection (LOD) ( 2.6 × 10 - 6 ) with respect to the macro-ion-selective sensors (ISE). Finally, sensor reversibility and stability in both wet and dry conditions is proven.

11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2365-2368, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946375

ABSTRACT

Bioimpedance is known for its linear relation with volume during normal breathing. For that reason, bioimpedance can be used as a noninvasive and comfortable technique for measuring respiration. The goal of this study is to analyze the temporal behavior of bioimpedance measured in four different electrode configurations during inspiratory loaded breathing. We measured four bioimpedance channels and airflow simultaneously in 10 healthy subjects while incremental inspiratory loads were imposed. Inspiratory loading threshold protocols are associated with breathing pattern changes and were used in respiratory mechanics studies. Consequently, this respiratory protocol allowed us to induce breathing pattern changes and evaluate the temporal relationship of bioimpedance with volume. We estimated the temporal delay between bioimpedance and volume respiratory cycles to evaluate the differences in their temporal behavior. The delays were computed as the lag which maximize the cross-correlation of the signals cycle by cycle. Six of the ten subjects showed delays in at least two different inspiratory loads. The delays were dependent on electrode configuration, hence the appearance of the delays between bioimpedance and volume were conditioned to the location and geometry of the electrode configuration. In conclusion, the delays between these signals could provide information about breathing pattern when breathing conditions change.


Subject(s)
Respiration , Respiratory Muscles , Lung Volume Measurements , Respiratory Mechanics
12.
ACS Nano ; 12(7): 7039-7047, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-29956911

ABSTRACT

Atomically thin two-dimensional (2D) materials belonging to transition metal dichalcogenides, due to their physical and electrical properties, are an exceptional vector for the exploration of next-generation semiconductor devices. Among them, due to the possibility of ambipolar conduction, tungsten diselenide (WSe2) provides a platform for the efficient implementation of polarity-controllable transistors. These transistors use an additional gate, named polarity gate, that, due to the electrostatic doping of the Schottky junctions, provides a device-level dynamic control of their polarity, that is, n- or p-type. Here, we experimentally demonstrate a complete doping-free standard cell library realized on WSe2 without the use of either chemical or physical doping. We show a functionally complete family of complementary logic gates (INV, NAND, NOR, 2-input XOR, 3-input XOR, and MAJ) and, due to the reconfigurable capabilities of the single devices, achieve the realization of highly expressive logic gates, such as exclusive-OR (XOR) and majority (MAJ), with fewer transistors than possible in conventional complementary metal-oxide-semiconductor logic. Our work shows a path to enable doping-free low-power electronics on 2D semiconductors, going beyond the concept of unipolar physically doped devices, while suggesting a road to achieve higher computational densities in two-dimensional electronics.

13.
Neural Netw ; 99: 134-147, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29414535

ABSTRACT

Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine learning technique to estimate heart-rate from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery-life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects is considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices.


Subject(s)
Electrocardiography/instrumentation , Heart Rate/physiology , Probability , Unsupervised Machine Learning , Wearable Electronic Devices , Action Potentials/physiology , Algorithms , Electrocardiography/trends , Humans , Neuronal Plasticity/physiology , Neurons/physiology , Unsupervised Machine Learning/trends , Wearable Electronic Devices/trends
14.
Sci Rep ; 7(1): 17866, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29259222

ABSTRACT

Surface-plasmon-polariton waves propagating at the interface between a metal and a dielectric, hold the key to future high-bandwidth, dense on-chip integrated logic circuits overcoming the diffraction limitation of photonics. While recent advances in plasmonic logic have witnessed the demonstration of basic and universal logic gates, these CMOS oriented digital logic gates cannot fully utilize the expressive power of this novel technology. Here, we aim at unraveling the true potential of plasmonics by exploiting an enhanced native functionality - the majority voter. Contrary to the state-of-the-art plasmonic logic devices, we use the phase of the wave instead of the intensity as the state or computational variable. We propose and demonstrate, via numerical simulations, a comprehensive scheme for building a nanoscale cascadable plasmonic majority logic gate along with a novel referencing scheme that can directly translate the information encoded in the amplitude and phase of the wave into electric field intensity at the output. Our MIM-based 3-input majority gate displays a highly improved overall area of only 0.636 µm2 for a single-stage compared with previous works on plasmonic logic. The proposed device demonstrates non-Boolean computational capability and can find direct utility in highly parallel real-time signal processing applications like pattern recognition.

15.
Sci Rep ; 7: 45556, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28358019

ABSTRACT

Two-dimensional semiconducting materials of the transition-metal-dichalcogenide family, such as MoS2 and WSe2, have been intensively investigated in the past few years, and are considered as viable candidates for next-generation electronic devices. In this paper, for the first time, we study scaling trends and evaluate the performances of polarity-controllable devices realized with undoped mono- and bi-layer 2D materials. Using ballistic self-consistent quantum simulations, it is shown that, with the suitable channel material, such polarity-controllable technology can scale down to 5 nm gate lengths, while showing performances comparable to the ones of unipolar, physically-doped 2D electronic devices.

16.
Sci Rep ; 6: 29448, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27390014

ABSTRACT

As scaling of conventional silicon-based electronics is reaching its ultimate limit, considerable effort has been devoted to find new materials and new device concepts that could ultimately outperform standard silicon transistors. In this perspective two-dimensional transition metal dichalcogenides, such as MoS2 and WSe2, have recently attracted considerable interest thanks to their electrical properties. Here, we report the first experimental demonstration of a doping-free, polarity-controllable device fabricated on few-layer WSe2. We show how modulation of the Schottky barriers at drain and source by a separate gate, named program gate, can enable the selection of the carriers injected in the channel, and achieved controllable polarity behaviour with ON/OFF current ratios >10(6) for both electrons and holes conduction. Polarity-controlled WSe2 transistors enable the design of compact logic gates, leading to higher computational densities in 2D-flatronics.

17.
Sensors (Basel) ; 12(11): 15088-118, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23202202

ABSTRACT

Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instruction memory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1) the percentage of the execution time of the application that is related to the execution of the loops, and (2) the distribution of the execution time percentage over each one of the loops that form the application.


Subject(s)
Heart Rate , Wireless Technology , Algorithms
18.
J Med Syst ; 35(5): 1289-98, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21373804

ABSTRACT

In order for wireless body area networks to meet widespread adoption, a number of security implications must be explored to promote and maintain fundamental medical ethical principles and social expectations. As a result, integration of security functionality to sensor nodes is required. Integrating security functionality to a wireless sensor node increases the size of the stored software program in program memory, the required time that the sensor's microprocessor needs to process the data and the wireless network traffic which is exchanged among sensors. This security overhead has dominant impact on the energy dissipation which is strongly related to the lifetime of the sensor, a critical aspect in wireless sensor network (WSN) technology. Strict definition of the security functionality, complete hardware model (microprocessor and radio), WBAN topology and the structure of the medium access control (MAC) frame are required for an accurate estimation of the energy that security introduces into the WBAN. In this work, we define a lightweight security scheme for WBAN, we estimate the additional energy consumption that the security scheme introduces to WBAN based on commercial available off-the-shelf hardware components (microprocessor and radio), the network topology and the MAC frame. Furthermore, we propose a new microcontroller design in order to reduce the energy consumption of the system. Experimental results and comparisons with other works are given.


Subject(s)
Computer Security/instrumentation , Electricity , Microcomputers , Monitoring, Physiologic/instrumentation , Telemetry/instrumentation , Computer Communication Networks , Equipment Design , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...