Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 3856, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36890169

ABSTRACT

Active faults accommodate tectonic plate motion through different slip modes, some stable and aseismic, others characterized by the occurrence of large earthquakes after long periods of inactivity. Although the slip mode estimation is of primary importance to improve seismic hazard assessment, this parameter inferred today from geodetic observations needs to be better constrained over many seismic cycles. From an analytical formulation developed for analyzing fault scarp formation and degradation in loosely consolidated material, we show that the final topographic shape generated by one earthquake rupture or by creep (i.e., continuous slip) deviates by as much as 10-20%, despite a similar cumulated slip and a constant diffusion coefficient. This result opens up the theoretical possibility of inverting, not only the cumulated slip or averaged slip rate, but also the number of earthquakes and their sizes from scarp morphologies. This approach is all the more relevant as the number of rupture events is limited. Estimating the fault slip history beyond a dozen earthquakes becomes very difficult as the effect of erosion on scarp morphology prevails. Our modeling also highlights the importance of trade-offs between fault slip history and diffusive processes. An identical topographic profile can be obtained either with a stable fault creep associated with rapid erosion, or a single earthquake rupture followed by slow erosion. These inferences, derived from the simplest possible diffusion model, are likely to be even more pronounced in nature.

2.
Sci Rep ; 10(1): 10899, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32616811

ABSTRACT

Tectonics and climate-driven surface processes govern the evolution of Earth's surface topography. Topographic change in turn influences lithospheric deformation, but the elementary scale at which this feedback can be effective is unclear. Here we show that it operates in a single weather-driven erosion event. In 2009, typhoon Morakot delivered ~ 3 m of precipitation in southern Taiwan, causing exceptional landsliding and erosion. This event was followed by a step increase in the shallow (< 15 km depth) earthquake frequency lasting at least 2.5 years. Also, the scaling of earthquake magnitude and frequency underwent a sudden increase in the area where mass wasting was most intense. These observations suggest that the progressive removal of landslide debris by rivers from southern Taiwan has acted to increase the crustal stress rate to the extent that earthquake activity was demonstrably affected. Our study offers the first evidence of the impact of a single weather-driven erosion event on tectonics.

3.
Nat Commun ; 9(1): 3791, 2018 09 17.
Article in English | MEDLINE | ID: mdl-30224698

ABSTRACT

Since the 1950s river networks have been intensely researched in geosciences and hydrology. This led to the definition of scaling laws that described the organisation of landscapes under fluvial incision and were later explored by statistical physics and fractal mathematics. The emblematic Hack's Law proposes a power-law relationship between watershed area and main stream length. Though extensively documented, a wide range of values is still reported for Hack's parameters. Some authors associate this dispersion to local geologic and climatic conditions. Here based on the analysis of large sets of river basins in various climatic and geological settings, we confirm the geometric similarity of river networks. We demonstrate that basin shape is mostly related to Hack's coefficient and not to the exponent, independently of external forcing such as lithology and pluviometry.

4.
Sci Rep ; 6: 33866, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27649782

ABSTRACT

Lateral variations along the Himalayan arc are suggested by an increasing number of studies and carry important information about the orogen's segmentation. Here we compile the hitherto most complete land gravity dataset in the region which enables the currently highest resolution plausible analysis. To study lateral variations in collisional structure we compute arc-parallel gravity anomalies (APaGA) by subtracting the average arc-perpendicular profile from our dataset; we compute likewise for topography (APaTA). We find no direct correlation between APaGA, APaTA and background seismicity, as suggested in oceanic subduction context. In the Himalayas APaTA mainly reflect relief and erosional effects, whereas APaGA reflect the deep structure of the orogen with clear lateral boundaries. Four segments are outlined and have disparate flexural geometry: NE India, Bhutan, Nepal &India until Dehradun, and NW India. The segment boundaries in the India plate are related to inherited structures, and the boundaries of the Shillong block are highlighted by seismic activity. We find that large earthquakes of the past millennium do not propagate across the segment boundaries defined by APaGA, therefore these seem to set limits for potential rupture of megathrust earthquakes.

5.
Nat Commun ; 5: 5564, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25412707

ABSTRACT

Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20 mm yr(-1), as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface.

6.
Nature ; 490(7419): 240-4, 2012 Oct 11.
Article in English | MEDLINE | ID: mdl-23023134

ABSTRACT

Large earthquakes nucleate at tectonic plate boundaries, and their occurrence within a plate's interior remains rare and poorly documented, especially offshore. The two large earthquakes that struck the northeastern Indian Ocean on 11 April 2012 are an exception: they are the largest strike-slip events reported in historical times and triggered large aftershocks worldwide. Yet they occurred within an intra-oceanic setting along the fossil fabric of the extinct Wharton basin, rather than on a discrete plate boundary. Here we show that the 11 April 2012 twin earthquakes are part of a continuing boost of the intraplate deformation between India and Australia that followed the Aceh 2004 and Nias 2005 megathrust earthquakes, subsequent to a stress transfer process recognized at other subduction zones. Using Coulomb stress change calculations, we show that the coseismic slips of the Aceh and Nias earthquakes can promote oceanic left-lateral strike-slip earthquakes on pre-existing meridian-aligned fault planes. We further show that persistent viscous relaxation in the asthenospheric mantle several years after the Aceh megathrust explains the time lag between the 2004 megathrust and the 2012 intraplate events. On a short timescale, the 2012 events provide new evidence for the interplay between megathrusts at the subduction interface and intraplate deformation offshore. On a longer geological timescale, the Australian plate, driven by slab-pull forces at the Sunda trench, is detaching from the Indian plate, which is subjected to resisting forces at the Himalayan front.

SELECTION OF CITATIONS
SEARCH DETAIL
...