Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38203002

ABSTRACT

Although semiconducting metal oxide (SMOx) nanoparticles (NPs) have attracted attention as sensing materials, the methodologies available to synthesize them with desirable properties are quite limited and/or often require relatively high energy consumption. Thus, we report herein the processing of Zn-doped SnO2 NPs via a microwave-assisted nonaqueous route at a relatively low temperature (160 °C) and with a short treatment time (20 min). In addition, the effects of adding Zn in the structural, electronic, and gas-sensing properties of SnO2 NPs were investigated. X-ray diffraction and high-resolution transmission electron microscopy analyses revealed the single-phase of rutile SnO2, with an average crystal size of 7 nm. X-ray absorption near edge spectroscopy measurements revealed the homogenous incorporation of Zn ions into the SnO2 network. Gas sensing tests showed that Zn-doped SnO2 NPs were highly sensitive to sub-ppm levels of NO2 gas at 150 °C, with good recovery and stability even under ambient moisture. We observed an increase in the response of the Zn-doped sample of up to 100 times compared to the pristine one. This enhancement in the gas-sensing performance was linked to the Zn ions that provided more surface oxygen defects acting as active sites for the NO2 adsorption on the sensing material.

2.
Phys Chem Chem Phys ; 21(39): 22031-22038, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31559996

ABSTRACT

Material processing has become essential for the proper control, tuning and consequent application of the properties of micro/nanoparticles. In this case, we report herein the capability of the microwave-assisted hydrothermal (MAH) method to prepare the SrTiO3 compound, as a case study of inorganic compounds. Analyses conducted by X-ray diffraction, X-ray photoelectron and X-ray absorption spectroscopies confirmed that the MAH route enables the formation of pristine SrTiO3. The results indicated that the combination of thermal and non-thermal effects during the MAH treatment provides ideal conditions for an efficient and rapid synthesis of pristine SrTiO3 mesocrystals. Scanning electron microscopy images revealed a cube-like morphology (of ca. 1 µm) formed via a self-assembly process, influenced by the MAH time. Additionally, photoluminescence measurements revealed a broad blue emission related to intrinsic defects, which decreased with the MAH synthesis time.

3.
ACS Appl Mater Interfaces ; 8(39): 26066-26072, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27610828

ABSTRACT

A detailed study of the structural, surface, and gas-sensing properties of nanostructured CoxZn1-xO films is presented. X-ray diffraction (XRD) analysis revealed a decrease in the crystallization degree with increasing Co content. The X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopies (XPS) revealed that the Co2+ ions preferentially occupied the Zn2+ sites and that the oxygen vacancy concentration increased as the amount of cobalt increased. Electrical measurements showed that the Co dopants not only enhanced the sensor response at low ozone levels (ca. 42 ppb) but also led to a decrease in the operating temperature and improved selectivity. The enhancement in the gas-sensing properties was attributed to the presence of oxygen vacancies, which facilitated ozone adsorption.

4.
Nanoscale ; 6(8): 4058-62, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24609437

ABSTRACT

This paper reports on a new ozone gas sensor based on α-Ag2WO4 nanorod-like structures. Electrical resistance measurements proved the efficiency of α-Ag2WO4 nanorods, which rendered good sensitivity even for a low ozone concentration (80 ppb), a fast response and a short recovery time at 300 °C, demonstrating great potential for a variety of applications.


Subject(s)
Nanostructures/chemistry , Ozone/analysis , Silver Compounds/chemistry , Tungsten Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...