Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1341781, 2024.
Article in English | MEDLINE | ID: mdl-38525153

ABSTRACT

Upon acquisition of persistent circulative viruses such as poleroviruses, the virus particles transcytose through membrane barriers of aphids at the midgut and salivary glands via hemolymph. Such intricate interactions can influence aphid behavior and fitness and induce associated gene expression in viruliferous aphids. Differential gene expression can be evaluated by omics approaches such as transcriptomics. Previously conducted aphid transcriptome studies used only one host species as the source of virus inoculum. Viruses typically have alternate hosts. Hence, it is not clear how alternate hosts infected with the same virus isolate alter gene expression in viruliferous vectors. To address the question, this study conducted a transcriptome analysis of viruliferous aphids that acquired the virus from different host species. A polerovirus, cotton leafroll dwarf virus (CLRDV), which induced gene expression in the cotton aphid, Aphis gossypii Glover, was assessed using four alternate hosts, viz., cotton, hibiscus, okra, and prickly sida. Among a total of 2,942 differentially expressed genes (DEGs), 750, 310, 1,193, and 689 genes were identified in A. gossypii that acquired CLRDV from infected cotton, hibiscus, okra, and prickly sida, respectively, compared with non-viruliferous aphids that developed on non-infected hosts. A higher proportion of aphid genes were overexpressed than underexpressed following CLRDV acquisition from cotton, hibiscus, and prickly sida. In contrast, more aphid genes were underexpressed than overexpressed following CLRDV acquisition from okra plants. Only four common DEGs (heat shock protein, juvenile hormone acid O-methyltransferase, and two unannotated genes) were identified among viruliferous aphids from four alternate hosts. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations indicated that the acquisition of CLRDV induced DEGs in aphids associated with virus infection, signal transduction, immune systems, and fitness. However, these induced changes were not consistent across four alternate hosts. These data indicate that alternate hosts could differentially influence gene expression in aphids and presumably aphid behavior and fitness despite being infected with the same virus isolate.

2.
Front Plant Sci ; 14: 1270531, 2023.
Article in English | MEDLINE | ID: mdl-38034554

ABSTRACT

Tomato spotted wilt orthotospovirus (TSWV) transmitted by thrips causes significant yield loss in peanut (Arachis hypogaea L.) production. Use of peanut cultivars with moderate field resistance has been critical for TSWV management. However, current TSWV resistance is often not adequate, and the availability of sources of tetraploid resistance to TSWV is very limited. Allotetraploids derived by crossing wild diploid species could help introgress alleles that confer TSWV resistance into cultivated peanut. Thrips-mediated TSWV screening identified two diploids and their allotetraploid possessing the AA, BB, and AABB genomes Arachis stenosperma V10309, Arachis valida GK30011, and [A. stenosperma × A. valida]4x (ValSten1), respectively. These genotypes had reduced TSWV infection and accumulation in comparison with peanut of pure cultivated pedigree. Transcriptomes from TSWV-infected and non-infected samples from A. stenosperma, A. valida, and ValSten1 were assembled, and differentially expressed genes (DEGs) following TSWV infection were assessed. There were 3,196, 8,380, and 1,312 significant DEGs in A. stenosperma, A. valida, and ValSten1, respectively. A higher proportion of genes decreased in expression following TSWV infection for A. stenosperma and ValSten1, whereas a higher proportion of genes increased in expression following infection in A. valida. The number of DEGs previously annotated as defense-related in relation to abiotic and biotic stress was highest in A. valida followed by ValSten1 and A. stenosperma. Plant phytohormone and photosynthesis genes also were differentially expressed in greater numbers in A. valida followed by ValSten1 and A. stenosperma, with over half of those exhibiting decreases in expression.

3.
Pathogens ; 12(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37764910

ABSTRACT

Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) causes spotted wilt disease in peanut (Arachis hypogaea L.) and limits yield. Breeding programs have been developing TSWV-resistant cultivars, but availability of sources of resistance against TSWV in cultivated germplasm is extremely limited. Diploid wild Arachis species can serve as important sources of resistance, and despite ploidy barriers (cultivated peanut is tetraploid), their usage in breeding programs is now possible because of the knowledge and development of induced interspecific allotetraploid hybrids. This study screened 10 wild diploid Arachis and six induced allotetraploid genotypes via thrips-mediated TSWV transmission assays and thrips' feeding assays in the greenhouse. Three parameters were evaluated: percent TSWV infection, virus accumulation, and temporal severity of thrips feeding injury. Results indicated that the diploid A. stenosperma accession V10309 and its derivative-induced allotetraploid ValSten1 had the lowest TSWV infection incidences among the evaluated genotypes. Allotetraploid BatDur1 had the lowest thrips-inflicted damage at each week post thrips release, while diploid A. batizocoi accession K9484 and A. duranensis accession V14167 had reduced feeding damage one week post thrips release, and diploids A. valida accession GK30011 and A. batizocoi had reduced feeding damage three weeks post thrips releasethan the others. Overall, plausible TSWV resistance in diploid species and their allotetraploid hybrids was characterized by reduced percent TSWV infection, virus accumulation, and feeding severity. Furthermore, a few diploids and tetraploid hybrids displayed antibiosis against thrips. These results document evidence for resistance against TSWV and thrips in wild diploid Arachis species and peanut-compatible-induced allotetraploids.

4.
BMC Genomics ; 24(1): 343, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37344773

ABSTRACT

BACKGROUND: The tobacco thrips (Frankliniella fusca Hinds; family Thripidae; order Thysanoptera) is an important pest that can transmit viruses such as the tomato spotted wilt orthotospovirus to numerous economically important agricultural row crops and vegetables. The structural and functional genomics within the order Thysanoptera has only begun to be explored. Within the > 7000 known thysanopteran species, the melon thrips (Thrips palmi Karny) and the western flower thrips (Frankliniella occidentalis Pergrande) are the only two thysanopteran species with assembled genomes. RESULTS: A genome of F. fusca was assembled by long-read sequencing of DNA from an inbred line. The final assembly size was 370 Mb with a single copy ortholog completeness of ~ 99% with respect to Insecta. The annotated genome of F. fusca was compared with the genome of its congener, F. occidentalis. Results revealed many instances of lineage-specific differences in gene content. Analyses of sequence divergence between the two Frankliniella species' genomes revealed substitution patterns consistent with positive selection in ~ 5% of the protein-coding genes with 1:1 orthologs. Further, gene content related to its pest status, such as xenobiotic detoxification and response to an ambisense-tripartite RNA virus (orthotospovirus) infection was compared with F. occidentalis. Several F. fusca genes related to virus infection possessed signatures of positive selection. Estimation of CpG depletion, a mutational consequence of DNA methylation, revealed that F. fusca genes that were downregulated and alternatively spliced in response to virus infection were preferentially targeted by DNA methylation. As in many other insects, DNA methylation was enriched in exons in Frankliniella, but gene copies with homology to DNA methyltransferase 3 were numerous and fragmented. This phenomenon seems to be relatively unique to thrips among other insect groups. CONCLUSIONS: The F. fusca genome assembly provides an important resource for comparative genomic analyses of thysanopterans. This genomic foundation allows for insights into molecular evolution, gene regulation, and loci important to agricultural pest status.


Subject(s)
Thysanoptera , Animals , Thysanoptera/physiology , Insecta , Crops, Agricultural , Evolution, Molecular , Epigenesis, Genetic
5.
Cells ; 11(13)2022 06 29.
Article in English | MEDLINE | ID: mdl-35805143

ABSTRACT

Begomoviruses are transmitted by several cryptic species of the sweetpotato whitefly, Bemisia tabaci (Gennadius), in a persistent and circulative manner. Upon virus acquisition and circulative translocation within the whitefly, a multitude of molecular interactions occur. This study investigated the differentially expressed transcript profiles associated with the acquisition of the Old World monopartite begomovirus, tomato yellow leaf curl virus (TYLCV), and two New World bipartite begomoviruses, sida golden mosaic virus (SiGMV) and cucurbit leaf crumple virus (CuLCrV), in two invasive B. tabaci cryptic species, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED). A total of 881 and 559 genes were differentially expressed in viruliferous MEAM1 and MED whiteflies, respectively, compared with their non-viruliferous counterparts, of which 146 genes were common between the two cryptic species. For both cryptic species, the number of differentially expressed genes (DEGs) associated with TYLCV and SiGMV acquisition were higher compared with DEGs associated with CuLCrV acquisition. Pathway analysis indicated that the acquisition of begomoviruses induced differential changes in pathways associated with metabolism and organismal systems. Contrasting expression patterns of major genes associated with virus infection and immune systems were observed. These genes were generally overexpressed and underexpressed in B. tabaci MEAM1 and MED adults, respectively. Further, no specific expression pattern was observed among genes associated with fitness (egg production, spermatogenesis, and aging) in viruliferous whiteflies. The weighted gene correlation network analysis of viruliferous B. tabaci MEAM1 and MED adults identified different hub genes potentially implicated in the vector competence and circulative tropism of viruses. Taken together, the results indicate that both vector cryptic species and the acquired virus species could differentially affect gene expression.


Subject(s)
Begomovirus , Hemiptera , Animals , Begomovirus/genetics , Hemiptera/metabolism , Male , Middle East
6.
Cells ; 11(4)2022 02 16.
Article in English | MEDLINE | ID: mdl-35203347

ABSTRACT

This review provides a synopsis of transcriptional responses pertaining to interactions between plant viruses and the insect vectors that transmit them in diverse modes. In the process, it attempts to catalog differential gene expression pertinent to virus-vector interactions in vectors such as virus reception, virus cell entry, virus tissue tropism, virus multiplication, and vector immune responses. Whiteflies, leafhoppers, planthoppers, and thrips are the main insect groups reviewed, along with aphids and leaf beetles. Much of the focus on gene expression pertinent to vector-virus interactions has centered around whole-body RNA extraction, whereas data on virus-induced tissue-specific gene expression in vectors is limited. This review compares transcriptional responses in different insect groups following the acquisition of non-persistent, semi-persistent, and persistent (non-propagative and propagative) plant viruses and identifies parallels and divergences in gene expression patterns. Understanding virus-induced changes in vectors at a transcriptional level can aid in the identification of candidate genes for targeting with RNAi and/or CRISPR editing in insect vectors for management approaches.


Subject(s)
Hemiptera , Plant Viruses , Thysanoptera , Animals , Insect Vectors/genetics , Plant Diseases , Plant Viruses/genetics
7.
Viruses ; 13(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-34372510

ABSTRACT

Planting resistant cultivars is the most effective tactic to manage the thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) in peanut plants. However, molecular mechanisms conferring resistance to TSWV in resistant cultivars are unknown. In this study, transcriptomes of TSWV-susceptible (SunOleic 97R) and field-resistant (Tifguard) peanut cultivars with and without TSWV infection were assembled and differentially expressed genes (DEGs) were compared. There were 4605 and 2579 significant DEGs in SunOleic 97R and Tifguard, respectively. Despite the lower number of DEGs in Tifguard, an increased proportion of defense-related genes were upregulated in Tifguard than in the susceptible cultivar. Examples included disease resistance (R) proteins, leucine-rich repeats, stilbene synthase, dicer, and calmodulin. Pathway analysis revealed the increased downregulation of genes associated with defense and photosynthesis in the susceptible cultivar rather than in the resistant cultivar. These results suggest that essential physiological functions were less perturbed in the resistant cultivar than in the susceptible cultivar and that the defense response following TSWV infection was more robust in the resistant cultivar than in the susceptible cultivar.


Subject(s)
Arachis/genetics , Arachis/virology , Disease Resistance/genetics , Gene Expression , Plant Diseases/virology , Tospovirus/pathogenicity , Gene Expression Profiling , Solanum lycopersicum/virology , Tospovirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...