Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 100: 135-141, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35816942

ABSTRACT

PURPOSE: Within the STRA-MI-VT phase Ib/II trial (NCT04066517), the aim of this phantom study was to explore the feasibility of Cyberknife treatments on cardiac lesions by tracking as a single marker the lead tip of an implantable cardioverter defibrillator. The residual displacement of the lesion during the tracking was studied, planning margins were found and the dosimetric accuracy of the treatment was checked. MATERIALS AND METHODS: A lead was inserted into a phantom (EasyCube phantom, Sun Nuclear Co, USA) and then placed on the translating ExacTrac Gating System (BrainLAB AG, Germany). The phantom was rotated, a virtual lesion was identified and its displacement during the tracking was studied. Two plans were compared, calculated on the unrotated volume and on the envelope of the unrotated and the rotated volumes. The plans were delivered using the Cyberknife System (Accuray Inc, USA) and their dosimetric accuracy verified by gamma analysis with gafchromic films. RESULTS: The residual margin increases enhancing the distance between the lead and the lesion. It is 4 mm for distance 0 cm and 5 mm for distance 5 cm. The coverage is reduced by 3.8% (interquartile range 2.5%-4.7%) when the dose is prescribed on the unrotated volume. All treatment plans are accurate and 3% 3 mm gamma analysis results are greater than 94%. CONCLUSIONS: Results showed that tracking with a single marker is feasible considering adequate residual planning margins. The volumes could be further reduced by using additional markers, for example by placing them on the patient's skin.


Subject(s)
Radiosurgery , Tachycardia, Ventricular , Fiducial Markers , Humans , Phantoms, Imaging , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods
2.
J Interv Card Electrophysiol ; 61(3): 583-593, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32851578

ABSTRACT

BACKGROUND: Ventricular tachycardia (VT) is a life-threatening condition, which usually implies the need of an implantable cardioverter defibrillator in combination with antiarrhythmic drugs and catheter ablation. Stereotactic body radiotherapy (SBRT) represents a common form of therapy in oncology, which has emerged as a well-tolerated and promising alternative option for the treatment of refractory VT in patients with structural heart disease. OBJECTIVE: In the STRA-MI-VT trial, we will investigate as primary endpoints safety and efficacy of SBRT for the treatment of recurrent VT in patients not eligible for catheter ablation. Secondary aim will be to evaluate SBRT effects on global mortality, changes in heart function, and in the quality of life during follow-up. METHODS: This is a spontaneous, prospective, experimental (phase Ib/II), open-label study (NCT04066517); 15 patients with structural heart disease and intractable VT will be enrolled within a 2-year period. Advanced multimodal cardiac imaging preceding chest CT-simulation will serve to elaborate the treatment plan on different linear accelerators with target and organs-at-risk definition. SBRT will consist in a single radioablation session of 25 Gy. Follow-up will last up to 12 months. CONCLUSIONS: We test the hypothesis that SBRT reduces the VT burden in a safe and effective way, leading to an improvement in quality of life and survival. If the results will be favorable, radioablation will turn into a potential alternative option for selected patients with an indication to VT ablation, based on the opportunity to treat ventricular arrhythmogenic substrates in a convenient and less-invasive manner.


Subject(s)
Catheter Ablation , Tachycardia, Ventricular , Humans , Italy , Multimodal Imaging , Prospective Studies , Quality of Life , Tachycardia, Ventricular/diagnostic imaging , Tachycardia, Ventricular/surgery , Treatment Outcome
3.
Eur Heart J ; 37(23): 1835-46, 2016 06 14.
Article in English | MEDLINE | ID: mdl-26590176

ABSTRACT

AIM: Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder mainly due to mutations in desmosomal genes, characterized by progressive fibro-adipose replacement of the myocardium, arrhythmias, and sudden death. It is still unclear which cell type is responsible for fibro-adipose substitution and which molecular mechanisms lead to this structural change. Cardiac mesenchymal stromal cells (C-MSC) are the most abundant cells in the heart, with propensity to differentiate into several cell types, including adipocytes, and their role in ACM is unknown. The aim of the present study was to investigate whether C-MSC contributed to excess adipocytes in patients with ACM. METHODS AND RESULTS: We found that, in ACM patients' explanted heart sections, cells actively differentiating into adipocytes are of mesenchymal origin. Therefore, we isolated C-MSC from endomyocardial biopsies of ACM and from not affected by arrhythmogenic cardiomyopathy (NON-ACM) (control) patients. We found that both ACM and control C-MSC express desmosomal genes, with ACM C-MSC showing lower expression of plakophilin (PKP2) protein vs. CONTROLS: Arrhythmogenic cardiomyopathy C-MSC cultured in adipogenic medium accumulated more lipid droplets than controls. Accordingly, the expression of adipogenic genes was higher in ACM vs. NON-ACM C-MSC, while expression of cell cycle and anti-adipogenic genes was lower. Both lipid accumulation and transcription reprogramming were dependent on PKP2 deficiency. CONCLUSIONS: Cardiac mesenchymal stromal cells contribute to the adipogenic substitution observed in ACM patients' hearts. Moreover, C-MSC from ACM patients recapitulate the features of ACM adipogenesis, representing a novel, scalable, patient-specific in vitro tool for future mechanistic studies.


Subject(s)
Adipocytes/pathology , Arrhythmogenic Right Ventricular Dysplasia/pathology , Mesenchymal Stem Cells/pathology , Adipogenesis/physiology , Adult , Cell Differentiation/physiology , Cells, Cultured , Female , Humans , Lipid Metabolism/physiology , Male , Middle Aged , Plakophilins/metabolism , gamma Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...