Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Glob Womens Health ; 4: 970312, 2023.
Article in English | MEDLINE | ID: mdl-37746321

ABSTRACT

Historically, biomedical research has been led by and focused on men. The recent introduction of Artificial Intelligence (AI) in this area has further proven this practice to be discriminatory for other sexes and genders, more noticeably for women. To move towards a fair AI development, it is essential to include sex and gender diversity both in research practices and in the workplace. In this context, the Bioinfo4women (B4W) program of the Barcelona Supercomputing Center (i) promotes the participation of women scientists by improving their visibility, (ii) fosters international collaborations between institutions and programs and (iii) advances research on sex and gender bias in AI and health. In this article, we discuss methodology and results of a series of conferences, titled â€Å“Sex and Gender Bias in Artificial Intelligence and Health, organized by B4W and La Caixa Foundation from March to June 2021 in Barcelona, Spain. The series consisted of nine hybrid events, composed of keynote sessions and seminars open to the general audience, and two working groups with invited experts from different professional backgrounds (academic fields such as biology, engineering, and sociology, as well as NGOs, journalists, lawyers, policymakers, industry). Based on this awareness-raising action, we distilled key recommendations to facilitate the inclusion of sex and gender perspective into public policies, educational programs, industry, and biomedical research, among other sectors, and help overcome sex and gender biases in AI and health.

2.
EPMA J ; 13(2): 299-313, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35719134

ABSTRACT

Digital biomarkers are defined as objective, quantifiable physiological and behavioral data that are collected and measured by means of digital devices. Their use has revolutionized clinical research by enabling high-frequency, longitudinal, and sensitive measurements. In the field of neurodegenerative diseases, an example of a digital biomarker-based technology is instrumental activities of daily living (iADL) digital medical application, a predictive biomarker of conversion from mild cognitive impairment (MCI) due to Alzheimer's disease (AD) to dementia due to AD in individuals aged 55 + . Digital biomarkers show promise to transform clinical practice. Nevertheless, their use may be affected by variables such as demographics, genetics, and phenotype. Among these factors, sex is particularly important in Alzheimer's, where men and women present with different symptoms and progression patterns that impact diagnosis. In this study, we explore sex differences in Altoida's digital medical application in a sample of 568 subjects consisting of a clinical dataset (MCI and dementia due to AD) and a healthy population. We found that a biological sex-classifier, built on digital biomarker features captured using Altoida's application, achieved a 75% ROC-AUC (receiver operating characteristic - area under curve) performance in predicting biological sex in healthy individuals, indicating significant differences in neurocognitive performance signatures between males and females. The performance dropped when we applied this classifier to more advanced stages on the AD continuum, including MCI and dementia, suggesting that sex differences might be disease-stage dependent. Our results indicate that neurocognitive performance signatures built on data from digital biomarker features are different between men and women. These results stress the need to integrate traditional approaches to dementia research with digital biomarker technologies and personalized medicine perspectives to achieve more precise predictive diagnostics, targeted prevention, and customized treatment of cognitive decline. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-022-00284-3.

3.
JMIR Mhealth Uhealth ; 10(7): e30976, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34978535

ABSTRACT

BACKGROUND: Against a long-term trend of increasing demand, the COVID-19 pandemic has led to a global rise in common mental disorders. Now more than ever, there is an urgent need for scalable, evidence-based interventions to support mental well-being. OBJECTIVE: The aim of this proof-of-principle study was to evaluate the efficacy of a mobile-based app in adults with self-reported symptoms of anxiety and stress in a randomized control trial that took place during the first wave of the COVID-19 pandemic in the United Kingdom. METHODS: Adults with mild to severe anxiety and moderate to high levels of perceived stress were randomized to either the intervention or control arm. Participants in the intervention arm were given access to the Foundations app for the duration of the 4-week study. All participants were required to self-report a range of validated measures of mental well-being (10-item Connor-Davidson Resilience scale [CD-RISC-10], 7-item Generalized Anxiety Disorder scale [GAD-7], Office of National Statistics Four Subjective Well-being Questions [ONS-4], World Health Organization-5 Well-Being Index [WHO-5]) and sleep (Minimal Insomnia Scale [MISS]) at baseline and at weeks 2 and 4. The self-reported measures of perceived stress (10-item Perceived Stress Score [PSS-10]) were obtained weekly. RESULTS: A total of 136 participants completed the study and were included in the final analysis. The intervention group (n=62) showed significant improvements compared to the control group (n=74) on measures of anxiety, with a mean GAD-7 score change from baseline of -1.35 (SD 4.43) and -0.23 (SD 3.24), respectively (t134=1.71, P=.04); resilience, with a mean change in CD-RISC score of 1.79 (SD 4.08) and -0.31 (SD 3.16), respectively (t134=-3.37, P<.001); sleep, with a mean MISS score change of -1.16 (SD 2.67) and -0.26 (SD 2.29), respectively (t134=2.13, P=.01); and mental well-being, with a mean WHO-5 score change of 1.53 (SD 5.30) and -0.23 (SD 4.20), respectively (t134=-2.16, P=.02), within 2 weeks of using Foundations, with further improvements emerging at week 4. Perceived stress was also reduced within the intervention group, although the difference did not reach statistical significance relative to the control group, with a PSS score change from baseline to week 2 of -2.94 (SD 6.84) and -2.05 (SD 5.34), respectively (t134= 0.84, P=.20). CONCLUSIONS: This study provides a proof of principle that the digital mental health app Foundations can improve measures of mental well-being, anxiety, resilience, and sleep within 2 weeks of use, with greater effects after 4 weeks. Foundations therefore offers potential as a scalable, cost-effective, and accessible solution to enhance mental well-being, even during times of crisis such as the COVID-19 pandemic. TRIAL REGISTRATION: OSF Registries osf.io/f6djb; https://osf.io/vm3xq.


Subject(s)
COVID-19 , Mobile Applications , Sleep Initiation and Maintenance Disorders , Adult , Humans , Mental Health , Pandemics
4.
Front Neurol ; 13: 882635, 2022.
Article in English | MEDLINE | ID: mdl-36742045

ABSTRACT

Vesicular Zn2+ (zinc) is released at synapses and has been demonstrated to modulate neuronal responses. However, mechanisms through which dysregulation of zinc homeostasis may potentiate neuronal dysfunction and neurodegeneration are not well-understood. We previously reported that accumulation of soluble amyloid beta oligomers (AßO) at synapses correlates with synaptic loss and that AßO localization at synapses is regulated by synaptic activity and enhanced by the release of vesicular Zn2+ in the hippocampus, a brain region that deteriorates early in Alzheimer's disease (AD). Significantly, drugs regulating zinc homeostasis inhibit AßO accumulation and improve cognition in mouse models of AD. We used both sexes of a transgenic mouse model lacking synaptic Zn2+ (ZnT3KO) that develops AD-like cognitive impairment and neurodegeneration to study the effects of disruption of Zn2+ modulation of neurotransmission in cognition, protein expression and activation, and neuronal excitability. Here we report that the genetic removal of synaptic Zn2+ results in progressive impairment of hippocampal-dependent memory, reduces activity-dependent increase in Erk phosphorylation and BDNF mRNA, alters regulation of Erk activation by NMDAR subunits, increases neuronal spiking, and induces biochemical and morphological alterations consistent with increasing epileptiform activity and neurodegeneration as ZnT3KO mice age. Our study shows that disruption of synaptic Zn2+ triggers neurodegenerative processes and is a potential pathway through which AßO trigger altered expression of neurotrophic proteins, along with reduced hippocampal synaptic density and degenerating neurons, neuronal spiking activity, and cognitive impairment and supports efforts to develop therapeutics to preserve synaptic zinc homeostasis in the brain as potential treatments for AD.

5.
Nat Commun ; 11(1): 5445, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33116115

ABSTRACT

Single-cell RNA sequencing studies on gene co-expression patterns could yield important regulatory and functional insights, but have so far been limited by the confounding effects of differentiation and cell cycle. We apply a tailored experimental design that eliminates these confounders, and report thousands of intrinsically covarying gene pairs in mouse embryonic stem cells. These covariations form a network with biological properties, outlining known and novel gene interactions. We provide the first evidence that miRNAs naturally induce transcriptome-wide covariations and compare the relative importance of nuclear organization, transcriptional and post-transcriptional regulation in defining covariations. We find that nuclear organization has the greatest impact, and that genes encoding for physically interacting proteins specifically tend to covary, suggesting importance for protein complex formation. Our results lend support to the concept of post-transcriptional RNA operons, but we further present evidence that nuclear proximity of genes may provide substantial functional regulation in mammalian single cells.


Subject(s)
Cell Nucleus/genetics , Gene Regulatory Networks , Protein Interaction Maps , Animals , Cell Line , Gene Expression Profiling , Gene Expression Regulation , Gene Knockout Techniques , Genetic Variation , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , RNA-Seq , Ribonuclease III/deficiency , Ribonuclease III/genetics , Ribonuclease III/metabolism , Single-Cell Analysis , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
6.
NPJ Digit Med ; 3: 81, 2020.
Article in English | MEDLINE | ID: mdl-32529043

ABSTRACT

Precision Medicine implies a deep understanding of inter-individual differences in health and disease that are due to genetic and environmental factors. To acquire such understanding there is a need for the implementation of different types of technologies based on artificial intelligence (AI) that enable the identification of biomedically relevant patterns, facilitating progress towards individually tailored preventative and therapeutic interventions. Despite the significant scientific advances achieved so far, most of the currently used biomedical AI technologies do not account for bias detection. Furthermore, the design of the majority of algorithms ignore the sex and gender dimension and its contribution to health and disease differences among individuals. Failure in accounting for these differences will generate sub-optimal results and produce mistakes as well as discriminatory outcomes. In this review we examine the current sex and gender gaps in a subset of biomedical technologies used in relation to Precision Medicine. In addition, we provide recommendations to optimize their utilization to improve the global health and disease landscape and decrease inequalities.

7.
eNeuro ; 3(5)2016.
Article in English | MEDLINE | ID: mdl-27844057

ABSTRACT

Intellectual disability in Down syndrome (DS) is accompanied by altered neuro-architecture, deficient synaptic plasticity, and excitation-inhibition imbalance in critical brain regions for learning and memory. Recently, we have demonstrated beneficial effects of a combined treatment with green tea extract containing (-)-epigallocatechin-3-gallate (EGCG) and cognitive stimulation in young adult DS individuals. Although we could reproduce the cognitive-enhancing effects in mouse models, the underlying mechanisms of these beneficial effects are unknown. Here, we explored the effects of a combined therapy with environmental enrichment (EE) and EGCG in the Ts65Dn mouse model of DS at young age. Our results show that combined EE-EGCG treatment improved corticohippocampal-dependent learning and memory. Cognitive improvements were accompanied by a rescue of cornu ammonis 1 (CA1) dendritic spine density and a normalization of the proportion of excitatory and inhibitory synaptic markers in CA1 and dentate gyrus.


Subject(s)
CA1 Region, Hippocampal/pathology , Catechin/analogs & derivatives , Down Syndrome/therapy , Housing, Animal , Learning , Nootropic Agents/pharmacology , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Catechin/pharmacology , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Dendritic Spines/pathology , Disease Models, Animal , Down Syndrome/metabolism , Down Syndrome/pathology , Learning/drug effects , Mice, Transgenic , Plant Extracts/pharmacology , Random Allocation , Recognition, Psychology/drug effects , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Tea , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
8.
J Neurochem ; 138(6): 785-805, 2016 09.
Article in English | MEDLINE | ID: mdl-27333343

ABSTRACT

Synapses are essential components of neurons and allow information to travel coordinately throughout the nervous system to adjust behavior to environmental stimuli and to control body functions, memories, and emotions. Thus, optimal synaptic communication is required for proper brain physiology, and slight perturbations of synapse function can lead to brain disorders. In fact, increasing evidence has demonstrated the relevance of synapse dysfunction as a major determinant of many neurological diseases. This notion has led to the concept of synaptopathies as brain diseases with synapse defects as shared pathogenic features. In this review, which was initiated at the 13th International Society for Neurochemistry Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental disorders (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer and Parkinson disease). We finally discuss the appropriateness and potential implications of gathering synapse diseases under a single term. Understanding common causes and intrinsic differences in disease-associated synaptic dysfunction could offer novel clues toward synapse-based therapeutic intervention for neurological and neuropsychiatric disorders. In this Review, which was initiated at the 13th International Society for Neurochemistry (ISN) Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer's and Parkinson's diseases), gathered together under the term of synaptopathies. Read the Editorial Highlight for this article on page 783.


Subject(s)
Nervous System Diseases/pathology , Synapses/pathology , Adult , Child , Humans , Neurodegenerative Diseases/pathology
9.
Lancet Neurol ; 15(8): 801-810, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27302362

ABSTRACT

BACKGROUND: Early cognitive intervention is the only routine therapeutic approach used for amelioration of intellectual deficits in individuals with Down's syndrome, but its effects are limited. We hypothesised that administration of a green tea extract containing epigallocatechin-3-gallate (EGCG) would improve the effects of non-pharmacological cognitive rehabilitation in young adults with Down's syndrome. METHODS: We enrolled adults (aged 16-34 years) with Down's syndrome from outpatient settings in Catalonia, Spain, with any of the Down's syndrome genetic variations (trisomy 21, partial trisomy, mosaic, or translocation) in a double-blind, placebo-controlled, phase 2, single centre trial (TESDAD). Participants were randomly assigned at the IMIM-Hospital del Mar Medical Research Institute to receive EGCG (9 mg/kg per day) or placebo and cognitive training for 12 months. We followed up participants for 6 months after treatment discontinuation. We randomly assigned participants using random-number tables and balanced allocation by sex and intellectual quotient. Participants, families, and researchers assessing the participants were masked to treatment allocation. The primary endpoint was cognitive improvement assessed by neuropsychologists with a battery of cognitive tests for episodic memory, executive function, and functional measurements. Analysis was on an intention-to-treat basis. This trial is registered with ClinicalTrials.gov, number NCT01699711. FINDINGS: The study was done between June 5, 2012, and June 6, 2014. 84 of 87 participants with Down's syndrome were included in the intention-to-treat analysis at 12 months (43 in the EGCG and cognitive training group and 41 in the placebo and cognitive training group). Differences between the groups were not significant on 13 of 15 tests in the TESDAD battery and eight of nine adaptive skills in the Adaptive Behavior Assessment System II (ABAS-II). At 12 months, participants treated with EGCG and cognitive training had significantly higher scores in visual recognition memory (Pattern Recognition Memory test immediate recall, adjusted mean difference: 6·23 percentage points [95% CI 0·31 to 12·14], p=0·039; d 0·4 [0·05 to 0·84]), inhibitory control (Cats and Dogs total score, adjusted mean difference: 0·48 [0·02 to 0·93], p=0·041; d 0·28 [0·19 to 0·74]; Cats and Dogs total response time, adjusted mean difference: -4·58 s [-8·54 to -0·62], p=0·024; d -0·27 [-0·72 to -0·20]), and adaptive behaviour (ABAS-II functional academics score, adjusted mean difference: 5·49 [2·13 to 8·86], p=0·002; d 0·39 [-0·06 to 0·84]). No differences were noted in adverse effects between the two treatment groups. INTERPRETATION: EGCG and cognitive training for 12 months was significantly more effective than placebo and cognitive training at improving visual recognition memory, inhibitory control, and adaptive behaviour. Phase 3 trials with a larger population of individuals with Down's syndrome will be needed to assess and confirm the long-term efficacy of EGCG and cognitive training. FUNDING: Jérôme Lejeune Foundation, Instituto de Salud Carlos III FEDER, MINECO, Generalitat de Catalunya.


Subject(s)
Catechin/analogs & derivatives , Cognition Disorders , Cognitive Behavioral Therapy , Down Syndrome/complications , Neuroprotective Agents/therapeutic use , Treatment Outcome , Adaptation, Psychological/drug effects , Adult , Catechin/therapeutic use , Cholesterol/metabolism , Cognition Disorders/drug therapy , Cognition Disorders/etiology , Cognition Disorders/rehabilitation , Double-Blind Method , Down Syndrome/drug therapy , Down Syndrome/rehabilitation , Female , Follow-Up Studies , Homocysteine/metabolism , Humans , Inhibition, Psychological , Male , Recognition, Psychology/drug effects , Retrospective Studies , Spain , Young Adult
10.
Front Behav Neurosci ; 9: 330, 2015.
Article in English | MEDLINE | ID: mdl-26696850

ABSTRACT

Down syndrome (DS) individuals present increased risk for Alzheimer's disease (AD) neuropathology and AD-type dementia. Here, we investigated the use of green tea extracts containing (-)-epigallocatechin-3-gallate (EGCG), as co-adjuvant to enhance the effects of environmental enrichment (EE) in Ts65Dn mice, a segmental trisomy model of DS that partially mimics DS/AD pathology, at the age of initiation of cognitive decline. Classical repeated measures ANOVA showed that combined EE-EGCG treatment was more efficient than EE or EGCG alone to improve specific spatial learning related variables. Using principal component analysis (PCA) we found that several spatial learning parameters contributed similarly to a first PC and explained a large proportion of the variance among groups, thus representing a composite learning measure. This PC1 revealed that EGCG or EE alone had no significant effect. However, combined EE-EGCG significantly ameliorated learning alterations of middle age Ts65Dn mice. Interestingly, PCA revealed an increased variability along learning sessions with good and poor learners in Ts65Dn, and this stratification did not disappear upon treatments. Our results suggest that combining EE and EGCG represents a viable therapeutic approach for amelioration of age-related cognitive decline in DS, although its efficacy may vary across individuals.

11.
Front Psychol ; 6: 708, 2015.
Article in English | MEDLINE | ID: mdl-26089807

ABSTRACT

The recent prospect of pharmaceutical interventions for cognitive impairment of Down syndrome (DS) has boosted a number of clinical trials in this population. However, running the trials has raised some methodological challenges and questioned the prevailing methodology used to evaluate cognitive functioning of DS individuals. This is usually achieved by comparing DS individuals to matched healthy controls of the same mental age. We propose a new tool, the TESDAD Battery that uses comparison with age-matched typically developed adults. This is an advantageous method for probing the clinical efficacy of DS therapies, allowing the interpretation and prediction of functional outcomes in clinical trials. In our DS population the TESDAD battery permitted a quantitative assessment of cognitive defects, which indicated language dysfunction and deficits in executive function, as the most important contributors to other cognitive and adaptive behavior outcomes as predictors of functional change in DS. Concretely, auditory comprehension and functional academics showed the highest potential as end-point measures of therapeutic intervention for clinical trials: the former as a cognitive key target for therapeutic intervention, and the latter as a primary functional outcome measure of clinical efficacy. Our results also emphasize the need to explore the modulating effects of IQ, gender and age on cognitive enhancing treatments. Noticeably, women performed significantly better than men of the same age and IQ in most cognitive tests, with the most consistent differences occurring in memory and executive functioning and negative trends rarely emerged on quality of life linked to the effect of age after adjusting for IQ and gender. In sum, the TESDAD battery is a useful neurocognitive tool for probing the clinical efficacy of experimental therapies in interventional studies in the DS population suggesting that age-matched controls are advantageous for determining normalization of DS.

SELECTION OF CITATIONS
SEARCH DETAIL
...