Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(11): e0166318, 2016.
Article in English | MEDLINE | ID: mdl-27902714

ABSTRACT

In the fall of 2014, an international news agency reported that patients suffering from Ebola virus disease (EVD) in Liberia were treated successfully with lamivudine, an antiviral drug used to treat human immunodeficiency virus-1 and hepatitis B virus infections. According to the report, 13 out of 15 patients treated with lamivudine survived and were declared free from Ebola virus disease. In this study, the anti-Ebola virus (EBOV) activity of lamivudine and another antiretroviral, zidovudine, were evaluated in a diverse set of cell lines against two variants of wild-type EBOV. Variable assay parameters were assessed to include different multiplicities of infection, lengths of inoculation times, and durations of dosing. At a multiplicity of infection of 1, lamivudine and zidovudine had no effect on EBOV propagation in Vero E6, Hep G2, or HeLa cells, or in primary human monocyte-derived macrophages. At a multiplicity of infection of 0.1, zidovudine demonstrated limited anti-EBOV activity in Huh 7 cells. Under certain conditions, lamivudine had low anti-EBOV activity at the maximum concentration tested (320 µM). However, lamivudine never achieved greater than 30% viral inhibition, and the activity was not consistently reproducible. Combination of lamivudine and zidovudine showed no synergistic antiviral activity. Independently, a set of in vitro experiments testing lamivudine and zidovudine for antiviral activity against an Ebola-enhanced green fluorescent protein reporter virus was performed at the Centers for Disease Control and Prevention. No antiviral activity was observed for either compound. A study evaluating the efficacy of lamivudine in a guinea pig model of EVD found no survival benefit. This lack of benefit was observed despite plasma lamivudine concentrations in guinea pig of about 4 µg/ml obtained in a separately conducted pharmacokinetics study. These studies found no evidence to support the therapeutic use of lamivudine for the treatment of EVD.


Subject(s)
Anti-HIV Agents/pharmacology , Ebolavirus/drug effects , Hemorrhagic Fever, Ebola/drug therapy , Lamivudine/pharmacology , Zidovudine/pharmacology , Animals , Chlorocebus aethiops , Ebolavirus/isolation & purification , Guinea Pigs , HeLa Cells , Hemorrhagic Fever, Ebola/virology , Humans , Macrophages , Pilot Projects , Vero Cells , Virus Replication/drug effects
2.
PLoS One ; 10(3): e0121540, 2015.
Article in English | MEDLINE | ID: mdl-25811857

ABSTRACT

4R-cembranoid (4R) is a natural cyclic diterpenoid found in tobacco leaves that displays neuroprotective activity. 4R protects against NMDA, paraoxon (POX), and diisopropylfluorophosphate (DFP) damage in rat hippocampal slices and against DFP in rats in vivo. The purpose of this study was to examine the metabolism and pharmacokinetics of 4R as part of its preclinical development as a neuroprotective drug. 10 µM 4R was found to be very stable in plasma for up to 1 hr incubation. 4R metabolism in human microsomes was faster than in the rat. Ten metabolites of 4R were detected in the microsomal samples; 6 dihydroxy and 4 monohydroxy forms of 4R. Male rats received a single dose of 4R at 6 mg/kg i.v., i.m., or s.c. The i.v. group had the highest plasma concentration of 1017 ng/mL. The t1/2 was 36 min and reached the brain within 10 min. The brain peak concentration was 6516 ng/g. The peak plasma concentration in the i.m. group was 163 ng/mL compared to 138 ng/mL in the s.c. group. The t1/2 of 4R after i.m. and s.c. administration was approximately 1.5 hr. The brain peak concentration was 329 ng/g in the i.m. group and 323 ng/g for the s.c. group. The brain to plasma ratio in the i.v. group was 6.4, reached 10 min after dose, whereas in the i.m. and s.c. groups was 2.49 and 2.48, respectively, at 90 min after dose. Our data show that 4R crosses the BBB and concentrates in the brain where it exerts its neuroprotective effect.


Subject(s)
Diterpenes/metabolism , Diterpenes/pharmacokinetics , Animals , Diterpenes/blood , Diterpenes/chemistry , Female , Humans , Male , Metabolome , Microsomes, Liver/metabolism , Rats, Sprague-Dawley
3.
Chirality ; 24(10): 796-803, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22744891

ABSTRACT

The presystemic sulfate conjugation of the stereoisomers of 4'-methoxyfenoterol, (R,R')-MF, (S,S')-MF, (R,S')-MF, and (S,R')-MF, was investigated using commercially available human intestinal S9 fractions, a mixture of sulfotransferase (SULT) enzymes. The results indicate that the sulfation was stereospecific and that an S-configuration at the ß-OH carbon of the MF molecule enhanced the maximal formation rates with (S,R')-MF (S,S')-MF (R,S')-MF ≈ (R,R')-MF, and competition studies demonstrated that (S,R')-MF is an effective inhibitor of (R,R')-MF sulfation (IC(50) = 60 µM). In addition, the results from a cDNA-expressed human SULT isoform screen indicated that SULT1A1, SULT1A3, and SULT1E1 can mediate the sulfation of all four MF stereoisomers. Previously published molecular models of SULT1A3 and SULT1A1 were used in docking simulations of the MF stereoisomers using Molegro Virtual Docker. The models of the MF-SULT1A3 and MF-SULT1A1 complexes indicate that each of the two chiral centers of MF molecule plays a role in the observed relative stabilities. The observed stereoselectivity is the result of multiple hydrogen bonding interactions and induced conformational changes within the substrate-enzyme complex. In conclusion, the results suggest that a formulation developed from a mixture of (R,R')-MF and (S,R')-MF may increase the oral bioavailability of (R,R')-MF.


Subject(s)
Fenoterol/analogs & derivatives , Sulfates/chemistry , Sulfotransferases/metabolism , Binding Sites , Computer Simulation , Fenoterol/chemistry , Humans , Models, Molecular , Protein Isoforms/metabolism , Stereoisomerism , Sulfotransferases/genetics
4.
Cancer Chemother Pharmacol ; 67(6): 1341-52, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20737149

ABSTRACT

PURPOSE: SR16157 is a novel dual-acting inhibitor of estrogen action that irreversibly inhibits the estrogen biosynthetic enzyme steroid sulfatase (STS) and releases the selective estrogen receptor modulator SR16137, which blocks the estrogen receptor. SR16157 is a promising agent for the endocrine therapy of breast cancer. We conducted preclinical in vivo toxicity evaluations to determine the maximum-tolerated dose (MTD), target organ(s) of toxicity, reversibility, dose-limiting toxicity, no observable adverse effect level (NOAEL), and toxicokinetics (TK) and to investigate a potential biomarker for use in SR16157 clinical trials. METHODS: SR16157 was administered to female Fischer 344 rats or beagle dogs by oral gavage (po) or capsule. Intravenous (iv) groups were included for the determination of bioavailability. Endpoints evaluated included clinical observations, body weights, hematology, serum chemistry, pharmacokinetics, TK, pathology of tissues, and STS activity in liver, or peripheral blood mononuclear cells (PBMCs). RESULTS: For rats, the MTD (i.e., the highest dose that did not cause lethality but produced toxicity) was 33 mg/kg/day (198 mg/m(2)/day), and the NOAEL was <10 mg/kg/day (60 mg/m(2)/day). For dogs, the MTD was estimated to exceed 10 mg/kg/day (200 mg/m(2)/day), and the NOAEL was estimated to be at or above 2.5 mg/kg/day (50 mg/m(2)/day). CONCLUSIONS: Our studies demonstrate that SR16157 has excellent pharmacokinetic properties and an acceptable toxicological profile. Modulation of STS activity in PBMCs appeared to be a possible biomarker for use in future clinical trials of SR16157.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacokinetics , Norpregnatrienes/pharmacokinetics , Selective Estrogen Receptor Modulators/pharmacokinetics , Steryl-Sulfatase/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents, Hormonal/toxicity , Biological Availability , Biomarkers/blood , Dogs , Dose-Response Relationship, Drug , Female , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Male , Norpregnatrienes/toxicity , Rats , Rats, Inbred F344 , Selective Estrogen Receptor Modulators/toxicity , Species Specificity
5.
J Med Chem ; 53(9): 3685-95, 2010 May 13.
Article in English | MEDLINE | ID: mdl-20361799

ABSTRACT

Among the known antimalarial drugs, chloroquine (CQ) and other 4-aminoquinolines have shown high potency and good bioavailability. Yet complications associated with drug resistance necessitate the discovery of effective new antimalarial agents. ADMET prediction studies were employed to evaluate a library of new molecules based on the 4-aminoquinolone-related structure of CQ. Extensive in vitro screening and in vivo pharmacokinetic studies in mice helped to identify two lead molecules, 18 and 4, with promising in vitro therapeutic efficacy, improved ADMET properties, low risk for drug-drug interactions, and desirable pharmacokinetic profiles. Both 18 and 4 are highly potent antimalarial compounds, with IC(50) values of 5.6 and 17.3 nM, respectively, against the W2 (CQ-resistant) strain of Plasmodium falciparum (for CQ, IC(50) = 382 nM). When tested in mice, these compounds were found to have biological half-lives and plasma exposure values similar to or higher than those of CQ; they are therefore desirable candidates to pursue in future clinical trials.


Subject(s)
Aminoquinolines/pharmacology , Antimalarials/chemistry , Aminoquinolines/therapeutic use , Animals , Antimalarials/pharmacology , Drug Evaluation, Preclinical , Half-Life , Mice , Pharmacokinetics , Plasmodium falciparum/drug effects , Small Molecule Libraries , Toxicology
6.
Drug Metab Dispos ; 36(1): 129-36, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17954528

ABSTRACT

The purpose of this study was to investigate the sulfation of resveratrol (3,5,4'-trihydroxystilbene) and its potential to exhibit drug-drug interactions via sulfation. The possible interaction of resveratrol with 17beta-estradiol (E2), a major estrogen hormone and prototypic substrate for sulfate conjugation, was studied. Resveratrol and E2 are both known to undergo sulfate conjugation catalyzed by human sulfotransferases (SULTs). Resveratrol is a phytoestrogen with mixed estrogen agonist/antagonist properties that is being developed as a chemopreventive agent. The sulfate conjugation of E2 and resveratrol were studied individually using S9 fractions from human liver and jejunum as well as recombinant human SULT isoforms. The sulfation of E2 (3-20 nM) was then investigated in the presence of various concentrations (0, 0.5, 1, and 2 microM) of resveratrol using the two S9 preparations as well as recombinant SULT1E1, the major isoform responsible for E2 sulfation. Resveratrol inhibited E2 sulfation with estimated K(i) values of 1.1 microM (liver), 0.6 microM (jejunum), and 2.3 microM (SULT1E1), concentrations that could be pharmacologically relevant. The results suggest that these phytoestrogens can potentially alter the homeostasis of estrogen levels. These findings also imply that resveratrol may inhibit the metabolism of other estrogen analogs or therapeutic agents such as ethinylestradiol or dietary components that are also substrates for SULT1E1.


Subject(s)
Estradiol/metabolism , Jejunum/metabolism , Liver/metabolism , Microsomes/metabolism , Phytoestrogens/pharmacology , Stilbenes/pharmacology , Sulfotransferases/metabolism , Arylsulfotransferase/metabolism , Female , Humans , Jejunum/drug effects , Liver/drug effects , Male , Microsomes/drug effects , Microsomes, Liver/metabolism , Recombinant Proteins/metabolism , Resveratrol , Sulfates/metabolism
7.
J Chromatogr B Analyt Technol Biomed Life Sci ; 829(1-2): 123-35, 2005 Dec 27.
Article in English | MEDLINE | ID: mdl-16275131

ABSTRACT

Myristyl nicotinate (Nia-114) is an ester prodrug being developed for delivery of nicotinic acid (NIC) into the skin for prevention of actinic keratosis and its progression to skin cancer. To facilitate dermal studies of Nia-114, a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using methyl ethyl ketone (MEK) as a deproteinization solvent was developed and validated for the simultaneous determination of Nia-114, NIC, and nicotinamide (NAM) in rabbit plasma. NAM is the principal metabolite of NIC, which is also expected to have chemopreventive properties. The analytes were chromatographically separated using a Spherisorb Cyano column under isocratic conditions, and detected by multiple reaction monitoring (MRM) in positive-ion electrospray ionization mode with a run time of 9 min. The method utilized a plasma sample volume of 0.2 ml and isotope-labeled D4 forms of each analyte as internal standards. The method was linear over the concentration range of 2-1000, 8-1000, and 75-1000 ng/ml, for Nia-114, NIC, and NAM, respectively. The intra- and inter-day assay accuracy and precision were within +/-15% for all analytes at low, medium, and high quality control standard levels. The relatively high value for the lower limit of quantitation (LLOQ) of NAM was demonstrated to be due to the high level of endogenous NAM in the rabbit plasma (about 350 ng/ml). Endogenous levels of NIC and NAM in human, dog, rat, and mouse plasma were also determined, and mean values ranged from <2 ng/ml NIC and 38.3 ng/ml NAM in human, to 233 ng/ml NIC and 622 ng/ml NAM in mouse. Nia-114 was generally unstable in rabbit plasma, as evidenced by loss of 44-50% at room temperature by 2 h, and loss of 64-70% upon storage at -20 degrees C for 1 week, whereas it was stable (<7% loss) upon storage at -80 degrees C for 1 month.


Subject(s)
Butanones/chemistry , Chromatography, Liquid/methods , Niacin/analogs & derivatives , Niacin/blood , Niacinamide/blood , Solvents/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Rabbits , Reference Standards , Reproducibility of Results , Sensitivity and Specificity
8.
Int J Toxicol ; 23(3): 179-89, 2004.
Article in English | MEDLINE | ID: mdl-15204721

ABSTRACT

The purpose of this study was to evaluate the bioavailability and pharmacokinetics of a new antimalarial drug, AQ-13, a structural analog of chloroquine (CQ) that is active against CQ-resistant Plasmodium species, in rats and cynomolgus macaques. Sprague-Dawley rats (n = 4/sex) were administered a single dose of AQ-13 intravenously (i.v.) (10 mg/kg) or orally (20 or 102 mg/kg). Blood and plasma samples were collected at several timepoints. AQ-13 achieved C(max) after oral administration at approximately 3 to 4 h and could be detected in blood for 2 to 5 days after oral administration. The ratio of area under the curve (AUC) values at the high and low dose for AQ-13 deviated from an expected ratio of 5.0, indicating nonlinear kinetics. A metabolite peak was noted in the chromatograms that was identified as monodesethyl AQ-13. Oral bioavailability of AQ-13 was good, approximately 70%. The pharmacokinetics of AQ-13 was also determined in cynomolgus macaques after single (i.v., 10 mg/kg; oral, 20 or 100 mg/kg) and multiple doses (oral loading dose of 50, 100, or 200 mg/kg on first day followed by oral maintenance dose of 25, 50, or 100 mg/kg, respectively, for 6 days). The AUC and C(max) values following single oral dose administration were not dose proportional; the C(max) value for AQ-13 was 15-fold higher following an oral dose of 100 mg/kg compared to 20 mg/kg. Monodesethyl AQ-13 was a significant metabolite formed by cynomolgus macaques and the corresponding C(max) values for this metabolite increased only 3.8-fold over the dose range, suggesting that the formation of monodesethyl AQ-13 is saturable in this species. The bioavailability of AQ-13 in cynomolgus macaques following oral administration was 23.8% for the 20-mg/kg group and 47.6% for the 100-mg/kg group. Following repeat dose administration, high concentrations of monodesethyl AQ-13 were observed in the blood by day 4, exceeding the AQ-13 blood concentrations through day 22. Saturation of metabolic pathways and reduced metabolite elimination after higher doses are suggested to play a key role in AQ-13 pharmacokinetics in macaques. In summary, the pharmacokinetic profile and metabolism of AQ-13 are very similar to that reported in the literature for chloroquine, suggesting that this new agent is a promising candidate for further development for the treatment of chloroquine-resistant malaria.


Subject(s)
Antimalarials/blood , Quinolines/blood , Administration, Oral , Animals , Antimalarials/administration & dosage , Antimalarials/metabolism , Area Under Curve , Biological Availability , Blood Proteins/metabolism , Female , Humans , Injections, Intravenous , Macaca fascicularis , Male , Metabolic Clearance Rate , Protein Binding , Quinolines/administration & dosage , Quinolines/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...