Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36993264

ABSTRACT

Environmental influences on immune phenotypes are well-documented, but our understanding of which elements of the environment affect immune systems, and how, remains vague. Behaviors, including socializing with others, are central to an individual's interaction with its environment. We tracked behavior of rewilded laboratory mice of three inbred strains in outdoor enclosures and examined contributions of behavior, including social associations, to immune phenotypes. We found that the more associated two individuals were, the more similar their immune phenotypes were. Social association was particularly predictive of similar memory T and B cell profiles and was more influential than sibling relationships or worm infection status. These results highlight the importance of social networks for immune phenotype and reveal important immunological correlates of social life.

2.
R Soc Open Sci ; 4(7): 170111, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28791138

ABSTRACT

Quantitative information is essential to the empirical analysis of biological systems. In many such systems, spatial relations between anatomical structures is of interest, making imaging a valuable data acquisition tool. However, image data can be difficult to analyse quantitatively. Many image processing algorithms are highly sensitive to variations in the image, limiting their current application to fields where sample and image quality may be very high. Here, we develop robust image processing algorithms for extracting structural information from a dataset of high-variance histological images of inflamed liver tissue obtained during necropsies of wild Soay sheep. We demonstrate that features of the data can be measured in a fully automated manner, providing quantitative information which can be readily used in statistical analysis. We show that these methods provide measures that correlate well with a manual, expert operator-led analysis of the same images, that they provide advantages in terms of sampling a wider range of information and that information can be extracted far more quickly than in manual analysis.

3.
J R Soc Interface ; 12(102): 20141125, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25411411

ABSTRACT

A standard assumption in the modelling of epidemic dynamics is that the population of interest is well mixed, and that no clusters of metapopulations exist. The well-known and oft-used SIR model, arguably the most important compartmental model in theoretical epidemiology, assumes that the disease being modelled is strongly immunizing, directly transmitted and has a well-defined period of infection, in addition to these population mixing assumptions. Childhood infections, such as measles, are prime examples of diseases that fit the SIR-like mechanism. These infections have been well studied for many systems with large, well-mixed populations with endemic infection. Here, we consider a setting where populations are small and isolated. The dynamics of infection are driven by stochastic extinction-recolonization events, producing large, sudden and short-lived epidemics before rapidly dying out from a lack of susceptible hosts. Using a TSIR model, we fit prevaccination measles incidence and demographic data in Bornholm, the Faroe Islands and four districts of Iceland, between 1901 and 1965. The datasets for each of these countries suffer from different levels of data heterogeneity and sparsity. We explore the potential for prediction of this model: given historical incidence data and up-to-date demographic information, and knowing that a new epidemic has just begun, can we predict how large it will be? We show that, despite a lack of significant seasonality in the incidence of measles cases, and potentially severe heterogeneity at the population level, we are able to estimate the size of upcoming epidemics, conditioned on the first time step, to within reasonable confidence. Our results have potential implications for possible control measures for the early stages of new epidemics in small populations.


Subject(s)
Disease Outbreaks , Measles/epidemiology , Stochastic Processes , Communicable Disease Control , Demography , Denmark , Epidemics , Humans , Iceland , Incidence , Measles Vaccine , Models, Statistical , Population Dynamics , Seasons , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...