Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36362035

ABSTRACT

Grapevine red blotch virus (GRBV) is a recently identified virus. Previous research indicates primarily a substantial impact on berry ripening in all varieties studied. The current study analyzed grapes' primary and secondary metabolism across grapevine genotypes and seasons to reveal both conserved and variable impacts to GRBV infection. Vitis vinifera cv. Cabernet Sauvignon (CS) grapevines grafted on two different rootstocks (110R and 420A) were analyzed in 2016 and 2017. Metabolite profiling revealed a considerable impact on amino acid and malate acid levels, volatile aroma compounds derived from the lipoxygenase pathway, and anthocyanins synthesized in the phenylpropanoid pathway. Conserved transcriptional responses to GRBV showed induction of auxin-mediated pathways and photosynthesis with inhibition of transcription and translation processes mainly at harvest. There was an induction of plant-pathogen interactions at pre-veraison, for all genotypes and seasons, except for CS 110R in 2017. Lastly, differential co-expression analysis revealed a transcriptional shift from metabolic synthesis and energy metabolism to transcription and translation processes associated with a virus-induced gene silencing transcript. This plant-derived defense response transcript was only significantly upregulated at veraison for all genotypes and seasons, suggesting a phenological association with disease expression and plant immune responses.


Subject(s)
Geminiviridae , Virus Diseases , Vitis , Vitis/metabolism , Anthocyanins/metabolism , Geminiviridae/metabolism , Fruit/metabolism , Virus Diseases/metabolism
2.
Molecules ; 27(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35268834

ABSTRACT

There is an increase in the levels of volatile phenols in wine made with smoke-impacted grapes. These compounds are present in wood smoke resulting from the pyrolysis (thermal decomposition) of lignin and at high levels give overpowering smoky and ashy characters to a wine. This research aimed to compare all the suggested wine mitigation strategies that evolved from prior research using smoke-impacted grapes under identical winemaking conditions except for the parameter under investigation. Cabernet Sauvignon grapes were received from three areas with varying amounts of smoke exposure in Northern California. Gas chromatography combined with mass spectrometry (GC-MS) and descriptive analyses were performed to correlate the volatile phenol composition to smoke taint characteristics. The winemaking variables investigated were the use of different fermentation yeasts, oak additions, and fermentation temperatures. Among other attributes, smokiness and ashy aftertaste were significantly different among the wines, showing a clear difference between the wines made from smoke-impacted fruit and the control wines made from non-impacted fruit. Findings indicate that mitigation strategies during red wine fermentation have a limited impact on the extraction of smoke-taint markers and the expression of smoke-taint sensory characteristics.


Subject(s)
Wine
3.
Molecules ; 25(14)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708105

ABSTRACT

Grapevine red blotch disease (GRBD) is a recently identified viral disease that affects grapevines. GRBD has been shown to impact grapevine physiology and grape composition by altering specific ripening events. However, no studies have been reported on the impact of GRBD on wine composition and its sensory attributes. This study evaluated the impact of GRBD on wine primary and secondary metabolites, in addition to its sensory properties, when making wines from Cabernet Sauvignon and Merlot grapes during two seasons. Wines made with GRBD-impacted fruit were lower in ethanol content when compared to wines made with grapes from healthy grapevines. This was attributed to the lower total soluble sugar (TSS) levels of diseased grapes due to delayed ripening at harvest. GRBD impacted wine phenolic composition by decreasing anthocyanin concentrations and increasing flavonol concentrations in some instances. Additionally, proanthocyanidin concentrations were also consistently higher in GRBD wines compared to wines made from healthy fruit. Descriptive analysis demonstrated that GRBD can impact wine style by altering aroma, flavor, and mouthfeel attributes. However, the extent of GRBD impact on wine composition and sensory properties were site and season dependent.


Subject(s)
Flavoring Agents/chemistry , Flexiviridae/metabolism , Odorants/analysis , Plant Diseases/microbiology , Vitis/microbiology , Wine/analysis , Anthocyanins/chemistry , Anthocyanins/metabolism , Color , Ethanol/chemistry , Ethanol/metabolism , Flavonols/chemistry , Fruit/chemistry , Humans , Phenols/chemistry , Proanthocyanidins/chemistry , Proanthocyanidins/metabolism , Saccharomyces cerevisiae/metabolism , Secondary Metabolism , Sugars/chemistry , Sugars/metabolism , Taste
4.
J Sci Food Agric ; 100(4): 1436-1447, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31742703

ABSTRACT

BACKGROUND: Grapevine red blotch virus (GRBV) is a recently discovered DNA virus, which was demonstrated to be responsible for grapevine red blotch disease (GRBD). Its presence has been confirmed in the United States, Canada, Mexico, and South Korea in white and red Vitis vinifera cultivars, including Chardonnay. It has been shown that the three-cornered alfalfa treehopper (Spissistilus festinus) was able to both acquire the GRBV from a grapevine infected and transmit it to healthy grapevines in glasshouse conditions. Studies found that GRBD impacts fruit price, grapevine physiology, and grape berry composition and metabolism in red cultivars. This study evaluated the impact of GRBD on V. vinifera L. Chardonnay grape and wine composition and sensory properties from one vineyard during the 2014, 2015 and 2016 seasons. RESULTS: Grapes from symptomatic red blotch diseased grapevines were lower in total soluble solids, flavan-3-ol, and total phenolic content, and higher in flavonol content when compared to grapes from healthy grapevines. Wines made with grapes from symptomatic grapevines resulted mostly in lower ethanol content and higher pH when compared to wines made from healthy grapevines. Analysis of volatile compounds and descriptive analysis demonstrated that GRBD can impact wine style by altering aroma, flavor, and mouthfeel attributes. CONCLUSIONS: The impacts of GRBD on grape composition directly influenced wine chemistry. The decreased ethanol content impacted not only the levels of volatile compounds but the sensory perception during descriptive analysis. The extent of GRBD impact on the grape composition and wine composition and sensory attributes varied between seasons. © 2019 Society of Chemical Industry.


Subject(s)
Fruit/chemistry , Geminiviridae/physiology , Plant Diseases/virology , Vitis/virology , Wine/analysis , Wine/virology , Anthocyanins/chemistry , Anthocyanins/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Fruit/metabolism , Humans , Phenols/chemistry , Phenols/metabolism , Seasons , Taste , Vitis/chemistry , Vitis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...