Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Struct Mol Biol ; 30(9): 1265-1274, 2023 09.
Article in English | MEDLINE | ID: mdl-37524969

ABSTRACT

The inhibitor of apoptosis protein BIRC2 regulates fundamental cell death and survival signaling pathways. Here we show that BIRC2 accumulates in the nucleus via binding of its second and third BIR domains, BIRC2BIR2 and BIRC2BIR3, to the histone H3 tail and report the structure of the BIRC2BIR3-H3 complex. RNA-seq analysis reveals that the genes involved in interferon and defense response signaling and cell-cycle regulation are most affected by depletion of BIRC2. Overexpression of BIRC2 delays DNA damage repair and recovery of the cell-cycle progression. We describe the structural mechanism for targeting of BIRC2BIR3 by a potent but biochemically uncharacterized small molecule inhibitor LCL161 and demonstrate that LCL161 disrupts the association of endogenous BIRC2 with H3 and stimulates cell death in cancer cells. We further show that LCL161 mediates degradation of BIRC2 in human immunodeficiency virus type 1-infected human CD4+ T cells. Our findings provide mechanistic insights into the nuclear accumulation of and blocking BIRC2.


Subject(s)
Inhibitor of Apoptosis Proteins , Thiazoles , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Apoptosis/genetics , Signal Transduction/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
2.
J Gastroenterol ; 56(5): 442-455, 2021 05.
Article in English | MEDLINE | ID: mdl-33782752

ABSTRACT

BACKGROUND: We previously showed that supernatants of Lactobacillus biofilms induced an anti-inflammatory response by affecting the secretion of macrophage-derived cytokines, which was abrogated upon immunodepletion of the stress protein GroEL. METHODS: We purified GroEL from L. reuteri and analysed its anti-inflammatory properties in vitro in human macrophages isolated from buffy coats, ex vivo in explants from human biopsies and in vivo in a mouse model of DSS induced intestinal inflammation. As a control, we used GroEL purified (LPS-free) from E. coli. RESULTS: We found that L. reuteri GroEL (but not E. coli GroEL) inhibited pro-inflammatory M1-like macrophages markers, and favored M2-like markers. Consequently, L. reuteri GroEL inhibited pro-inflammatory cytokines (TNFα, IL-1ß, IFNγ) while favouring an anti-inflammatory secretome. In colon tissues from human biopsies, L. reuteri GroEL was also able to decrease markers of inflammation and apoptosis (caspase 3) induced by LPS. In mice, we found that rectal administration of L. reuteri GroEL (but not E. coli GroEL) inhibited all signs of haemorrhagic colitis induced by DSS including intestinal mucosa degradation, rectal bleeding and weight loss. It also decreased intestinal production of inflammatory cytokines (such as IFNγ) while increasing anti-inflammatory IL-10 and IL-13. These effects were suppressed when animals were immunodepleted in macrophages. From a mechanistic point of view, the effect of L. reuteri GroEL seemed to involve TLR4, since it was lost in TRL4-/- mice, and the activation of a non-canonical TLR4 pathway. CONCLUSIONS: L. reuteri GroEL, by affecting macrophage inflammatory features, deserves to be explored as an alternative to probiotics.


Subject(s)
Chaperonin 60/pharmacology , Colon/drug effects , Inflammation/prevention & control , Lactobacillus/metabolism , Animals , Chaperonin 60/therapeutic use , Colon/physiopathology , Disease Models, Animal , Inflammation/drug therapy , Limosilactobacillus reuteri/drug effects , Limosilactobacillus reuteri/metabolism , Mice, Inbred BALB C , Statistics, Nonparametric
3.
Oncogene ; 38(15): 2767-2777, 2019 04.
Article in English | MEDLINE | ID: mdl-30542121

ABSTRACT

A multicenter clinical study demonstrated the presence of a loss-of-function HSP110 mutation in about 15% of colorectal cancers, which resulted from an alternative splicing and was produced at the detriment of wild-type HSP110. Patients expressing low levels of wild-type HSP110 had excellent outcomes (i.e. response to an oxaliplatin-based chemotherapy). Here, we show in vitro, in vivo, and in patients' biopsies that HSP110 co-localizes with DNA damage (γ-H2AX). In colorectal cancer cells, HSP110 translocates into the nucleus upon treatment with genotoxic chemotherapy such as oxaliplatin. Furthermore, we show that HSP110 interacts with the Ku70/Ku80 heterodimer, an essential element of the non-homologous end joining (NHEJ) repair machinery. We also demonstrate by evaluating the resolved 53BP1 foci that depletion in HSP110 impairs repair steps of the NHEJ pathway, which is associated with an increase in DNA double-strand breaks and in the cells' sensitivity to oxaliplatin. HSP110-depleted cells sensitization to oxaliplatin-induced DNA damage is abolished upon re-expression of HSP110. Confirming a role for HSP110 in DNA non-homologous repair, SCR7 and NU7026, two inhibitors of the NHEJ pathway, circumvents HSP110-induced resistance to chemotherapy. In conclusion, HSP110 through its interaction with the Ku70/80 heterodimer may participate in DNA repair, thereby inducing a protection against genotoxic therapy.


Subject(s)
Cell Nucleus/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , DNA End-Joining Repair/genetics , HSP110 Heat-Shock Proteins/genetics , Mutagens/pharmacology , Translocation, Genetic/genetics , Animals , Cell Line, Tumor , Cell Nucleus/drug effects , DNA Breaks, Double-Stranded/drug effects , DNA Damage/drug effects , DNA Damage/genetics , DNA End-Joining Repair/drug effects , DNA-Binding Proteins/genetics , HCT116 Cells , Humans , Ku Autoantigen/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Oxaliplatin/pharmacology , Translocation, Genetic/drug effects
4.
Cell Rep ; 5(4): 1082-94, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24210826

ABSTRACT

The THO complex is involved in transcription, genome stability, and messenger ribonucleoprotein (mRNP) formation, but its precise molecular function remains enigmatic. Under heat shock conditions, THO mutants accumulate large protein-DNA complexes that alter the chromatin density of target genes (heavy chromatin), defining a specific biochemical facet of THO function and a powerful tool of analysis. Here, we show that heavy chromatin distribution is dictated by gene boundaries and that the gene promoter is necessary and sufficient to convey THO sensitivity in these conditions. Single-molecule fluorescence in situ hybridization measurements show that heavy chromatin formation correlates with an unusually high firing pace of the promoter with more than 20 transcription events per minute. Heavy chromatin formation closely follows the modulation of promoter firing and strongly correlates with polymerase occupancy genome wide. We propose that the THO complex is required for tuning the dynamic of gene-nuclear pore association and mRNP release to the same high pace of transcription initiation.


Subject(s)
Chromatin/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Fungal , Nuclear Pore/genetics , Nuclear Proteins/genetics , Promoter Regions, Genetic , Ribonucleoproteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcription Factors/genetics , Heat-Shock Proteins/biosynthesis , Heat-Shock Proteins/genetics , Heat-Shock Response/genetics , Saccharomyces cerevisiae Proteins/biosynthesis , Transcription, Genetic
5.
Science ; 341(6146): 664-7, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23828889

ABSTRACT

Transcription is reported to be spatially compartmentalized in nuclear transcription factories with clusters of RNA polymerase II (Pol II). However, little is known about when these foci assemble or their relative stability. We developed a quantitative single-cell approach to characterize protein spatiotemporal organization, with single-molecule sensitivity in live eukaryotic cells. We observed that Pol II clusters form transiently, with an average lifetime of 5.1 (± 0.4) seconds, which refutes the notion that they are statically assembled substructures. Stimuli affecting transcription yielded orders-of-magnitude changes in the dynamics of Pol II clusters, which implies that clustering is regulated and plays a role in the cell's ability to effect rapid response to external signals. Our results suggest that transient crowding of enzymes may aid in rate-limiting steps of gene regulation.


Subject(s)
Gene Expression Regulation , RNA Polymerase II/metabolism , Transcription, Genetic , Cell Line, Tumor , Flavonoids/pharmacology , Humans , Piperidines/pharmacology , Single-Cell Analysis/methods , Time Factors , Transcription Elongation, Genetic/drug effects
6.
Cell ; 153(5): 1000-11, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23706738

ABSTRACT

Maintaining proper mRNA levels is a key aspect in the regulation of gene expression. The balance between mRNA synthesis and decay determines these levels. We demonstrate that most yeast mRNAs are degraded by the cytoplasmic 5'-to-3' pathway (the "decaysome"), as proposed previously. Unexpectedly, the level of these mRNAs is highly robust to perturbations in this major pathway because defects in various decaysome components lead to transcription downregulation. Moreover, these components shuttle between the cytoplasm and the nucleus, in a manner dependent on proper mRNA degradation. In the nucleus, they associate with chromatin-preferentially ∼30 bp upstream of transcription start-sites-and directly stimulate transcription initiation and elongation. The nuclear role of the decaysome in transcription is linked to its cytoplasmic role in mRNA decay; linkage, in turn, seems to depend on proper shuttling of its components. The gene expression process is therefore circular, whereby the hitherto first and last stages are interconnected.


Subject(s)
Gene Expression Regulation, Fungal , RNA Stability , RNA, Fungal/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism , Transcription, Genetic , Cell Nucleus/metabolism , Cytoplasm/metabolism , Exoribonucleases/metabolism , Genes, Fungal/genetics , RNA Polymerase II/metabolism , RNA, Fungal/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism
7.
PLoS Biol ; 9(1): e1000573, 2011 Jan 11.
Article in English | MEDLINE | ID: mdl-21264352

ABSTRACT

RNA processing events that take place on the transcribed pre-mRNA include capping, splicing, editing, 3' processing, and polyadenylation. Most of these processes occur co-transcriptionally while the RNA polymerase II (Pol II) enzyme is engaged in transcriptional elongation. How Pol II elongation rates are influenced by splicing is not well understood. We generated a family of inducible gene constructs containing increasing numbers of introns and exons, which were stably integrated in human cells to serve as actively transcribing gene loci. By monitoring the association of the transcription and splicing machineries on these genes in vivo, we showed that only U1 snRNP localized to the intronless gene, consistent with a splicing-independent role for U1 snRNP in transcription. In contrast, all snRNPs accumulated on intron-containing genes, and increasing the number of introns increased the amount of spliceosome components recruited. This indicates that nascent RNA can assemble multiple spliceosomes simultaneously. Kinetic measurements of Pol II elongation in vivo, Pol II ChIP, as well as use of Spliceostatin and Meayamycin splicing inhibitors showed that polymerase elongation rates were uncoupled from ongoing splicing. This study shows that transcription elongation kinetics proceed independently of splicing at the model genes studied here. Surprisingly, retention of polyadenylated mRNA was detected at the transcription site after transcription termination. This suggests that the polymerase is released from chromatin prior to the completion of splicing, and the pre-mRNA is post-transcriptionally processed while still tethered to chromatin near the gene end.


Subject(s)
RNA Polymerase II/metabolism , RNA Precursors/metabolism , RNA Splicing , RNA, Messenger/metabolism , Transcription, Genetic , Fluorescence Recovery After Photobleaching , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Introns , Inverted Repeat Sequences , Lac Repressors/genetics , Lac Repressors/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ribonucleoproteins, Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/metabolism , Spliceosomes/metabolism , Tumor Cells, Cultured , beta-Globins/genetics
8.
Annu Rev Biophys ; 38: 173-96, 2009.
Article in English | MEDLINE | ID: mdl-19416065

ABSTRACT

The advent of new technologies for the imaging of living cells has made it possible to determine the properties of transcription, the kinetics of polymerase movement, the association of transcription factors, and the progression of the polymerase on the gene. We report here the current state of the field and the progress necessary to achieve a more complete understanding of the various steps in transcription. Our Consortium is dedicated to developing and implementing the technology to further this understanding.


Subject(s)
Gene Expression Profiling/methods , Image Interpretation, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Transcription Factors/metabolism , Transcriptional Activation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...